Kevin Chou

Learn More
In recently developed Additive Manufacturing (AM) technologies, high-energy sources have been used to fabricate metallic parts, in a layer by layer fashion, by sintering and/or melting metal powders. In particular, Electron Beam Additive Manufacturing (EBAM) utilizes a high-energy electron beam to melt and fuse metal powders to build solid parts. EBAM is(More)
Quantum superpositions of distinct coherent states in a single-mode harmonic oscillator, known as "cat states," have been an elegant demonstration of Schrödinger's famous cat paradox. Here, we realize a two-mode cat state of electromagnetic fields in two microwave cavities bridged by a superconducting artificial atom, which can also be viewed as an(More)
Powder-based electron beam additive manufacturing (EBAM) has gained increased usage in different industries. Process monitoring such as temperatures may offer important information. However, temperature measurements in EBAM are challenging because of high temperature ranges, extreme gradients and fast transient response. In this study, temperature(More)
and is one of only eight of its kind currently funded by the NCI (competitive renewal in 2010). This program, which has been continuously funded by the NCI for 41 years, provides a unique eight-week research experience for New Jersey Medical School's first and second-year medical students as well as undergraduate students enrolled in our combined BS/MD(More)
In an early study, a thermal model has been developed, using finite element simulations, to study the temperature field and response in the electron beam additive manufacturing (EBAM) process, with an ability to simulate single pass scanning only. In this study, an investigation was focused on the initial thermal conditions, redesigned to analyze a critical(More)
  • 1