Learn More
B-RAF is the most frequently mutated protein kinase in human cancers. The finding that oncogenic mutations in BRAF are common in melanoma, followed by the demonstration that these tumours are dependent on the RAF/MEK/ERK pathway, offered hope that inhibition of B-RAF kinase activity could benefit melanoma patients. Herein, we describe the structure-guided(More)
BACKGROUND Dabrafenib is an inhibitor of BRAF kinase that is selective for mutant BRAF. We aimed to assess its safety and tolerability and to establish a recommended phase 2 dose in patients with incurable solid tumours, especially those with melanoma and untreated, asymptomatic brain metastases. METHODS We undertook a phase 1 trial between May 27, 2009,(More)
BACKGROUND Oncogenic BRAF mutations have been found in diverse malignancies and activate RAF/MEK/ERK signaling, a critical pathway of tumorigenesis. We examined the clinical characteristics and outcomes of patients with mutant (mut) BRAF advanced cancer referred to phase 1 clinic. METHODS We reviewed the records of 80 consecutive patients with mutBRAF(More)
Vemurafenib and dabrafenib selectively inhibit the v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) kinase, resulting in high response rates and increased survival in melanoma. Approximately 22% of individuals treated with vemurafenib develop cutaneous squamous cell carcinoma (cSCC) during therapy. The prevailing explanation for this is drug-induced(More)
The management of melanoma has evolved owing to improved understanding of its molecular drivers. To augment the current understanding of the prevalence, patterns, and associations of mutations in this disease, the results of clinical testing of 699 advanced melanoma patients using a pan-cancer next-generation sequencing (NGS) panel of hotspot regions in 46(More)
Despite recent development of promising immunotherapeutic and targeted drugs, prognosis in patients with advanced melanoma remains poor, and a cure for this disease remains elusive in most patients. The success of melanoma therapy depends on a better understanding of the biology of melanoma and development of drugs that effectively target the relevant genes(More)
Drosophila melanogaster has become a system of choice for functional genomic studies. Many resources, including online databases and software tools, are now available to support design or identification of relevant fly stocks and reagents or analysis and mining of existing functional genomic, transcriptomic, proteomic, etc. datasets. These include large(More)
Patients with BRAF mutation-positive advanced melanoma respond well to matched therapy with BRAF or MEK inhibitors, but often quickly develop resistance. Tumor tissue from ten patients with advanced BRAF mutation-positive melanoma who achieved partial response (PR) or complete response (CR) on BRAF and/or MEK inhibitors was analyzed using next generation(More)
Cell-free (cf) DNA in the plasma of cancer patients offers an easily obtainable source of biologic material for mutation analysis. Plasma samples from 157 patients with advanced cancers who progressed on systemic therapy were tested for 21 mutations in BRAF, EGFR, KRAS, and PIK3CA using the BEAMing method and results were compared to mutation analysis of(More)
OBJECTIVE AND METHODS In this phase 1b study, patients with stage 4 or unresectable stage 3 melanoma were treated with escalating doses of lenvatinib (once daily) and temozolomide (TMZ) (days 1-5) in 28-day cycles, to determine the maximum tolerated dose (MTD) of the combination. Dose Level (DL)1: lenvatinib 20 mg, TMZ 100 mg/m2; DL2: lenvatinib 24 mg, TMZ(More)