Kevin A. Stebbings

Learn More
We live in a world imbued with a rich mixture of complex sounds. Successful acoustic communication requires the ability to extract meaning from those sounds, even when degraded. One strategy used by the auditory system is to harness high-level contextual cues to modulate the perception of incoming sounds. An ideal substrate for this process is the massive(More)
Key questions about the thalamus are still unanswered in part because of the inability to stimulate its inputs while monitoring cortical output. To address this, we employed flavoprotein autofluorescence optical imaging to expedite the process of developing a brain slice in mouse with connectivity among the auditory midbrain, thalamus, thalamic reticular(More)
KEY POINTS Ageing is associated with hearing loss and changes in GABAergic signalling in the auditory system. We tested whether GABAergic signalling in an isolated forebrain preparation also showed ageing-related changes. A novel approach was used, whereby population imaging was coupled to quantitative pharmacological sensitivity. Sensitivity to GABAA(More)
The relationships between oxidative stress in the hippocampus and other aging-related changes such as hearing loss, cortical thinning, or changes in body weight are not yet known. We measured the redox ratio in a number of neural structures in brain slices taken from young and aged mice. Hearing thresholds, body weight, and cortical thickness were also(More)
Developmental exposure of rats to polychlorinated biphenyls (PCBs) causes impairments in hearing and in the functioning of peripheral and central auditory structures. Additionally, recent work from our laboratory has demonstrated an increase in audiogenic seizures. The current study aimed to further characterize the effects of PCBs on auditory brain(More)
Memory and learning are thought to result from changes in synaptic strength. Previous studies on synaptic physiology in brain slices have traditionally been focused on biochemical processes. Here, we demonstrate with experiments on mouse brain slices that central nervous system plasticity is also sensitive to mechanical stretch. This is important, given the(More)
The ability of the brain to process sensory information relies on both ascending and descending sets of projections. Until recently, the only way to study these two systems and how they interact has been with the use of in vivo preparations. Major advances have been made with acute brain slices containing the thalamocortical and cortico-thalamic pathways in(More)
  • 1