Kevin A. Simonin

Learn More
It is commonly assumed that transpiration does not occur at night because leaf stomata are closed in the dark. We tested this assumption across a diversity of ecosystems and woody plant species by various methods to explore the circumstances when this assumption is false. Our primary goals were: (1) to evaluate the nature and magnitude of nighttime(More)
Evaluations of plant water use in ecosystems around the world reveal a shared capacity by many different species to absorb rain, dew, or fog water directly into their leaves or plant crowns. This mode of water uptake provides an important water subsidy that relieves foliar water stress. Our study provides the first comparative evaluation of foliar uptake(More)
Although crown wetting events can increase plant water status, leaf wetting is thought to negatively affect plant carbon balance by depressing photosynthesis and growth. We investigated the influence of crown fog interception on the water and carbon relations of juvenile and mature Sequoia sempervirens trees. Field observations of mature trees indicated(More)
Previous research suggests that the lifetime carbon gain of a leaf is constrained by a tradeoff between metabolism and longevity. The biophysical reasons underlying this tradeoff are not fully understood. We used a photosynthesis-leaf water balance model to evaluate biophysical constraints on carbon gain. Leaf hydraulic conductance (K(Leaf)), carbon isotope(More)
Leaf water contains naturally occurring stable isotopes of oxygen and hydrogen in abundances that vary spatially and temporally. When sufficiently understood, these can be harnessed for a wide range of applications. Here, we review the current state of knowledge of stable isotope enrichment of leaf water, and its relevance for isotopic signals incorporated(More)
Ponderosa pine (Pinus ponderosa Dougl. ex P. Laws) forest stand density has increased significantly over the last century (Covington et al. 1997). To understand the effect of increased intraspecific competition, tree size (height and diameter at breast height (DBH)) and leaf area to sapwood area ratio (A(L):A(S)) on water relations, we compared hydraulic(More)
The stable oxygen isotope ratio (delta(18)O) of plant material has been shown to contain essential information on water and carbon fluxes at the plant and ecosystem scales. However, the effective path length (L(m)), a parameter introduced to leaf-water models still requires a comprehensive biological characterization to allow interpretation of delta(18)O(More)
Stable oxygen isotope ratios (delta18O) have become a valuable tool in the plant and ecosystem sciences. The interpretation of delta18O values in plant material is, however, still complicated owing to the complex interactions among factors that influence leaf water enrichment. This study investigated the interplay among environmental parameters, leaf(More)
During daylight hours, the isotope composition of leaf water generally approximates steady-state leaf water isotope enrichment model predictions. However, until very recently there was little direct confirmation that isotopic steady-state (ISS) transpiration in fact exists. Using isotope ratio infrared spectroscopy (IRIS) and leaf gas exchange systems we(More)
The two-pool and Péclet effect models represent two theories describing mechanistic controls underlying leaf water oxygen isotope composition at the whole-leaf level (δ(18) OL ). To test these models, we used a laser spectrometer coupled to a gas-exchange cuvette to make online measurements of δ(18) O of transpiration (δ(18) Otrans ) and transpiration rate(More)