Keun Chang Kwak

Learn More
In this paper, the fundamental idea of linguistic models introduced by Pedrycz and Vasilakos (1999) is followed and their comprehensive design framework is developed. The paradigm of linguistic modeling is concerned with constructing models that: 1) are user centric and 2) inherently dwell upon collections of highly interpretable and user-oriented entities(More)
This paper is concerned with an enhanced independent component analysis (ICA) and its application to face recognition. Typically, face representations obtained by ICA involve unsupervised learning and high-order statistics. In this paper, we develop an enhancement of the generic ICA by augmenting this method by the Fisher linear discriminant analysis (LDA);(More)
In this paper, we develop a method for recognizing face images by combining wavelet decomposition, Fisherface method, and fuzzy integral. The proposed approach is comprised of four main stages. The first stage uses the wavelet decomposition that helps extract intrinsic features of face images. As a result of this decomposition, we obtain four subimages(More)
In the area of biometrics, face classification becomes one of the most appealing and commonly used approaches for personal identification. There has been an ongoing quest for designing systems that exhibit high classification rates and portray significant robustness. This feature becomes of paramount relevance when dealing with noisy and uncertain images.(More)
In this study, we are concerned with a method for constructing quantum-based adaptive neuro-fuzzy networks (QANFNs) with a Takagi-Sugeno-Kang (TSK) fuzzy type based on the fuzzy granulation from a given input-output data set. For this purpose, we developed a systematic approach in producing automatic fuzzy rules based on fuzzy subtractive quantum(More)