Learn More
This paper presents a study on functional near-infrared spectroscopy (fNIRS) indicating that the hemodynamic responses of the right- and left-wrist motor imageries have distinct patterns that can be classified using a linear classifier for the purpose of developing a brain-computer interface (BCI). Ten healthy participants were instructed to imagine(More)
In this paper we propose to apply functional near-infrared spectroscopy (fNIRS) to measure the brain activity during mental counting and discriminate it from the no-control (rest) state, which could potentially lead to a two-choice brain-computer interface (BCI) application. fNIRS is a relatively new optical brain imaging modality that can be used for BCI.(More)
Keywords: Boundary control Flexible marine riser Distributed parameter system Partial differential equation (PDE) Adaptive control Lyapunov's direct method a b s t r a c t In this paper, robust adaptive boundary control for a flexible marine riser with vessel dynamics is developed to suppress the riser's vibration. To provide an accurate and concise(More)
BACKGROUND Near-infrared spectroscopy (NIRS) is a non-invasive neuroimaging technique that recently has been developed to measure the changes of cerebral blood oxygenation associated with brain activities. To date, for functional brain mapping applications, there is no standard on-line method for analysing NIRS data. METHODS In this paper, a novel on-line(More)
Functional near-infrared spectroscopy (fNIRS) is used to detect concentration changes of oxy-hemoglobin and deoxy-hemoglobin in the human brain. The main difficulty entailed in the analysis of fNIRS signals is the fact that the hemodynamic response to a specific neuronal activation is contaminated by physiological and instrument noises, motion artifacts,(More)
OBJECTIVE Functional near-infrared spectroscopy (fNIRS) is an emerging non-invasive brain imaging technique that measures brain activities by using near-infrared light of 650-950 nm wavelength. The major advantages of fNIRS are its low cost, portability, and good temporal resolution as a plausible solution to real-time imaging. Recent research has shown the(More)
THE PAPER PRESENTS STATE SPACE MODELS OF THE HEMODYNAMIC RESPONSE (HR) OF FNIRS TO AN IMPULSE STIMULUS IN THREE BRAIN REGIONS: motor cortex (MC), somatosensory cortex (SC), and visual cortex (VC). Nineteen healthy subjects were examined. For each cortex, three impulse HRs experimentally obtained were averaged. The averaged signal was converted to a state(More)
This paper presents a methodology for online estimation of brain activities with reduction in the effects of physiological noises in functional near-infrared spectroscopy signals. The input-output characteristics of a hemodynamic response are modeled as an autoregressive moving average model together with exogenous physical signals (i.e., ARMAX). In(More)
—In this brief, the investigational results for a robust adaptive vibration control of a translating tensioned beam with a varying traveling speed are presented. The dynamics of beam and actuator is modeled via the extended Hamilton's principle, in which the tension applied to the beam is given as a nonlinear spa-tiotemporally varying function. The moving(More)