Learn More
Keywords: Boundary control Flexible marine riser Distributed parameter system Partial differential equation (PDE) Adaptive control Lyapunov's direct method a b s t r a c t In this paper, robust adaptive boundary control for a flexible marine riser with vessel dynamics is developed to suppress the riser's vibration. To provide an accurate and concise(More)
This paper presents adaptive neural tracking control for a class of non-affine pure-feedback systems with multiple unknown state time-varying delays. To overcome the design difficulty from non-affine structure of pure-feedback system, mean value theorem is exploited to deduce affine appearance of state variables x(i) as virtual controls α(i), and of the(More)
—In this brief, the investigational results for a robust adaptive vibration control of a translating tensioned beam with a varying traveling speed are presented. The dynamics of beam and actuator is modeled via the extended Hamilton's principle, in which the tension applied to the beam is given as a nonlinear spa-tiotemporally varying function. The moving(More)
—In this paper, a collision-free navigation method for a group of autonomous wheeled vehicles is investigated. The position and orientation information of individual vehicles is transformed to navigation variables, which are the distance left to the goal position, the angle made by the orientation of the vehicle at the goal position and the(More)
This paper presents a state-space hemodynamic model by which any event-related hemodynamic prediction function (i.e., the basis function of the design matrix in the general linear model) is obtained as an output of the model. To model the actual event-related behavior during a task period (intra-activity dynamics) besides the contrasting behavior among the(More)