Learn More
Critical-sized defects in bone, whether induced by primary tumor resection, trauma, or selective surgery have in many cases presented insurmountable challenges to the current gold standard treatment for bone repair. The primary purpose of a tissue-engineered scaffold is to use engineering principles to incite and promote the natural healing process of bone(More)
A major goal in orthopedic biomaterials research is to design implant surfaces, which will enhance osseointegration in vivo. Several microscale as well as nanoscale architectures have been shown to significantly affect the functionality of bone cells i.e., osteoblasts. In this work, nanoporous alumina surfaces fabricated by a two-step anodization process(More)
Bacterial infection is one of the most common problems after orthopedic implant surgery. If not prevented, bacterial infection can result in serious and life threatening conditions such as osteomyelitis. Thus, in order to reduce chances of such serious complication, patients are often subjected to antibiotic drug therapy for 6-8 weeks after initial surgery.(More)
A goal of current orthopedic biomaterials research is to design implants that induce controlled, guided, and rapid healing. In addition to acceleration of normal wound healing phenomena, these implants should result in the formation of a characteristic interfacial layer with adequate biomechanical properties. To achieve these goals, however, a better(More)
Nanoporous alumina surfaces have a variety of applications in biosensors, biofiltration, and targeted drug delivery. However, the fabrication route to create these nanopores in alumina results in surface defects in the crystal lattice. This results in inherent charge on the porous surface causing biofouling, that is, nonspecific adsorption of biomolecules.(More)
Critical-sized defects in bone, whether caused by cancer tumor resection, trauma, or selective surgery have in many cases presented insurmountable challenges to the current gold-standard treatment for bone repair. The primary purpose of a tissue-engineered scaffold is to incite and promote the natural healing process of bone, which does not occur in(More)
—A biosensor application of vertically coupled glass mi-croring resonators with Q ∼ 12 000 is introduced. Using balanced photodetection, very high signal to noise ratios, and thus high sensitivity to refractive index changes (limit of detection of 1.8 × 10 −5 refractive index units), are achieved. Ellipsometry and X-ray pho-toelectron spectroscopy results(More)
An understanding of osteoblast response to surface topography is essential for successful bone tissue engineering applications. Alumina has been extensively used as a substrate for bone tissue constructs. However, current techniques do not allow precise surface topography and orientation of the material. In this research, a two-step anodization process was(More)
Hemocompatibility is a key consideration for the long-term success of blood contacting biomaterials; hence, there is a critical need to understand the physiological response elicited from blood/nano-biomaterial interactions. In this study, we have investigated the adsorption of key blood serum proteins, in vitro adhesion and activation of platelets, and(More)