Kethireddy V. V. Ananthalakshmi

Learn More
Enaminones are a novel group of compounds that have been shown to possess anticonvulsant activity in in vivo animal models of seizures. The cellular mechanism by which these compounds produce their anticonvulsant effects is not yet known. This study examined the effects of enaminones on excitatory synaptic transmission. We studied the effects of(More)
Enaminones are a novel group of compounds some of which possess anticonvulsant activity in in vivo animal models of seizures. We recently reported that some enaminones, including methyl 4-(4'-bromophenyl)aminocyclohex-3-en-6-methyl-2-oxo-1-oate, depress glutamate-mediated excitatory synaptic transmission and that this may contribute to their anticonvulsant(More)
The mechanism of anticonvulsant action was evaluated for the benzylamino enaminones. The most potent enaminone in this series was the unsubstituted benzylamine analog (30; methyl 4-benzylamino-6-methyl-2-oxocyclohex-3-en-1-oate) which had an oral effective dose (ED50) in rats of 27 mg/kg against maximal electroshock seizures, and a concentration 10-fold(More)
Some enaminones are reported to have in vivo anticonvulsant activity. We asked if methyl 4-(4'-bromophenyl)aminocyclohex-3-en-6-methyl-2-oxo-1-oate (E139), one of such enaminones produced in vitro effects that may underlie or explain these in vivo anticonvulsant actions by testing if E139 suppressed in vitro seizures. In vitro seizures were generated(More)
Due to the excellent anticonvulsant activity of previously synthesized halogenated enaminones, more disubstituted analogs were synthesized and evaluated in vitro. The new enaminones either had no effect, depressed, or enhanced population spike (PS) amplitude in the rat hippocampus in a concentration-dependent manner. Structure-activity relationship (SAR)(More)
We recently reported that cholecystokinin (CCK) excited nucleus accumbens (NAc) cells and depressed excitatory synaptic transmission indirectly through gamma-aminobutyric acid (GABA), acting on presynaptic GABAB receptors (Kombian et al. [2004] J. Physiol. 555:71-84). The present study tested the hypothesis that CCK modulates inhibitory synaptic(More)
The major projection cells of the nucleus accumbens (NAc) are under a strong inhibitory influence from GABAergic afferents and depend on afferent excitation to produce their output. We have earlier reported that substance P (SP), a peptide which is colocalized with GABA in these neurons, depresses excitatory synaptic transmission in this nucleus (Kombian,(More)
Enaminones, enamines of beta-dicarbonyl compounds, have been known for many years. Their early use has been relegated to serving as synthetic intermediates in organic synthesis and of late, in pharmaceutical development. Recently, the therapeutic potential of these entities has been realized. This review provides the background and current research in this(More)
The peptide cholecystokinin (CCK) is abundant in the rat nucleus accumbens (NAc). Although it is colocalized with dopamine (DA) in afferent terminals in this region, neurochemical and behavioural reports are equally divided as to whether CCK enhances or diminishes DA's actions in this nucleus. To better understand the role of this peptide in the physiology(More)
Substance P (SP) is an undecapeptide that is co-localized with conventional transmitters in the nucleus accumbens (NAc). Its neurochemical and behavioral effects resemble those of cocaine and amphetamine. How SP accomplishes these effects is not known, partly because its cellular and synaptic effects are not well characterized. Using whole cell and(More)