Keshav K. Singh

Learn More
The sirtuin gene family (SIRT) is hypothesized to regulate the aging process and play a role in cellular repair. This work demonstrates that SIRT3(-/-) mouse embryonic fibroblasts (MEFs) exhibit abnormal mitochondrial physiology as well as increases in stress-induced superoxide levels and genomic instability. Expression of a single oncogene (Myc or Ras) in(More)
The proximate cause of cancer cell death by radiation therapy and a number of therapeutic agents is through generation of reactive oxygen species, resulting in DNA damage as well as mitochondrial membrane disruption, triggering the apoptotic cascade. Because mitochondrial manganese superoxide dismutase catalyzes conversion of superoxide radicals to(More)
The Warburg Effect is characterized by an irreversible injury to mitochondrial oxidative phosphorylation (OXPHOS) and an increased rate of aerobic glycolysis. In this study, we utilized a breast epithelial cell line lacking mitochondrial DNA (rho(0)) that exhibits the Warburg Effect associated with breast cancer. We developed a MitoExpress array for rapid(More)
The genetic and molecular mechanisms responsible for and associated with the development and progression of prostate malignancy are largely unidentified. The peripheral zone is the major region of the human prostate gland where malignancy develops. The normal peripheral zone glandular epithelium has the unique function of accumulating high levels of zinc.(More)
BACKGROUND We previously hypothesized a role for mitochondria damage checkpoint (mito-checkpoint) in maintaining the mitochondrial integrity of cells. Consistent with this hypothesis, defects in mitochondria have been demonstrated to cause genetic and epigenetic changes in the nuclear DNA, resistance to cell-death and tumorigenesis. In this paper, we(More)
The better part of a century has passed since Otto Warburg first hypothesized that unique phenotypic characteristics of tumor cells might be associated with an impairment in the respiratory capacity of these cells. Since then a number of distinct differences between the mitochondria of normal cells and cancer cells have been observed at the genetic,(More)
Nearly a century of scientific research has revealed a number of notable differences in the structure and function of mitochondria between normal and cancer cells, including differences in metabolic activity, molecular composition, and mtDNA sequence. This article reviews several of these differences and discusses their clinical implications, especially(More)
Mitochondria are dynamic intracellular organelles that play a central role in oxidative metabolism and apoptosis. The recent resurgence of interest in the study of mitochondria has been fuelled in large part by the recognition that genetic and/or metabolic alterations in this organelle are causative or contributing factors in a variety of human diseases(More)
SUMMARY The program Fluctuation AnaLysis CalculatOR (FALCOR) is a web tool designed for use with Luria-Delbrück fluctuation analysis to calculate the frequency and rate from various mutation assays in bacteria and yeast. Three calculation methods are available through this program: (i) Ma-Sandri-Sarkar Maximum Likelihood Estimator (MSS-MLE) method, (ii)(More)
The MtArg8 reversion assay, which measures point mutation in mtDNA, indicates that in budding yeast Saccharomyces cerevisiae, DNA polymerase zeta and Rev1 proteins participate in the mitochondrial DNA mutagenesis. Supporting this evidence, both polymerase zeta and Rev1p were found to be localized in the mitochondria. This is the first report demonstrating(More)