Kerstin Yvonne Beste

Learn More
Soluble guanylyl cyclase (sGC) regulates several important physiological processes by converting GTP into the second-messenger cGMP. sGC has several structural and functional properties in common with adenylyl cyclases (ACs). Recently, we reported that membranous ACs and sGC are potently inhibited by 2',3'-O-(2,4,6-trinitrophenyl)-substituted purine and(More)
Adenosine 3',5'-cyclic monophosphate and guanosine 3',5'-cyclic monophosphate are second messengers that regulate multiple physiological functions. The existence of additional cyclic nucleotides in mammalian cells was postulated many years ago, but technical problems hampered development of the field. Using highly specific and sensitive mass spectrometry(More)
BACKGROUND Fluconazole, itraconazole, posaconazole and voriconazole are four triazole antifungal drugs administered for the prevention and in the treatment of invasive fungal infections. Therapeutic drug monitoring of these antifungals in human plasma is advised. METHODS After protein precipitation by adding methanol/ZnSO(4) containing ketoconazole as(More)
Historical background As early as 1965 it was proposed that in addition to the well-established second messengers, cyclic AMP and cyclic GMP, the cyclic pyrimidine nucleotides, cyclic CMP (cCMP) and cyclic UMP (cUMP) could play a role as second messenger molecules. This hypothesis was based on the identification of cCMPand cUMP-hydrolyzing phosphodiesterase(More)
Background The cyclic nucleotides adenosine 3’,5’-cyclic monophosphate (cAMP) and guanosine 3’,5’-cyclic monophosphate (cGMP) are well-known second messengers. They play an important role in signal transduction. They control numerous functions ranging from ion channel opening to regulation of gene expression. In 1963, cAMP and cGMP were detected in rat(More)
Adenylyl cyclases (ACs) and guanylyl cyclases (GCs) produce the second messengers cyclic adenosine monophosphate and cyclic guanosine monophosphate, respectively. ACs and GCs are differentially regulated by intercellular signaling molecules and are implicated in various disease states, including cardiovascular diseases, aging, pain, and neuropsychiatric(More)
Background Soluble guanylyl cyclase (sGC) constitutes a family of enzymes that catalyses the cyclization of guanosine 5’-triphosphate (GTP) to guanosine 3’,5’-cyclic monophosphate (cGMP). The heterodimeric hemoprotein is activated by nitric oxide and mediates a wide range of physiological effects like regulation of blood pressure and neuronal cell(More)
Guanylyl cyclases (GCs) regulate many physiological processes by catalyzing the synthesis of the second messenger cGMP. The GC family consists of seven particulate GCs (pGCs) and a nitric oxide-activated soluble GC (sGC). Rat sGC α1β1 possesses much broader substrate specificity than previously assumed. Moreover, the exotoxins CyaA from Bordetella pertussis(More)
  • 1