Kerstin Siemes

Learn More
Seafloor classification using acoustic remote sensing techniques is an attractive approach due to its high coverage capabilities and limited costs compared to taking samples of the seafloor. This paper focuses on the characterization of sediments in a coastal environment by combining different hydrographic systems, which are a multibeam echosounder (MBES),(More)
Acoustic remote sensing techniques for mapping sediment properties are of interest due to their low costs and high coverage. Model-based approaches directly couple the acoustic signals to sediment properties. Despite the limited coverage of the single-beam echosounder (SBES), it is widely used. Having available model-based SBES classification tools,(More)
Shallow water naval operations require detailed knowledge of the environmental characteristics. In this context, the BP'07 experiment was carried out in the Mediterranean Sea, south-east of Elba Island, in 2007. Measurements that were taken during this experiment employ a large set of sensors, thereby providing all information required to fully describe the(More)
Detailed information about the oceanic environment is essential for many applications in the field of marine geology, marine biology, coastal engineering, and marine operations. Especially, knowledge of the sediment properties is often required. Acoustic remote sensing techniques have become highly attractive for classifying the sea bottom and mapping the(More)
Acoustic remote sensing techniques are an attractive means for obtaining information on the composition of marine sediments since they have high coverage capabilities and thus allow for efficient surveying. Operating at a wide range of specific frequencies, the acoustic sensors provide insight into the sediment body at different depths. This article(More)
This contribution investigates the behavior of two important riverbed sediment classifiers, derived from multi-beam echo-sounder (MBES)-operating at 300 kHz-data, in very coarse sediment environments. These are the backscatter strength and the depth residuals. Four MBES data sets collected at different parts of rivers in the Netherlands are employed. From(More)
We present a method for accurately estimating the bathymetry from multi-beam echo-sounder (MBES) travel-time measurements in environments with large variations in the water column sound speeds (both temporally and spatially). In this type of environments the water column sound speeds at the time of the MBES transmission are often not known, preventing a(More)
  • 1