Learn More
To determine how soil properties influence nanoparticle (NP) fate, bioavailability and toxicity, this study compared the toxicity of nano zinc oxide (ZnO NPs), non-nano ZnO and ionic ZnCl2 to the earthworm Eisenia fetida in a natural soil at three pH levels. NP characterisation indicated that reaction with the soil media greatly controls ZnO properties.(More)
Rare earth niobates present an interesting group of materials due to their reversible ferroelastic to paraelastic phase transformation. So far these phase transformations have mainly been studied either at low temperatures (for instance in LaNbO 4) or in specimen that have been quenched after heat treatment. Here, high temperature phase transformations of(More)
Monodisperse, size-controlled Ni-P nanoparticles were synthesised in a single step process using triphenyl-phosphane (TPP), oleylamine (OA), and Ni(II)acetyl-acetonate. The nanoparticles were amorphous, contained ~30 at% P and their size was controlled between 7-21 nm simply by varying the amount of TPP. They are catalytically active for tailored carbon(More)
Anodic particle coloumetry is used to size silver nanoparticles impacting a carbon microelectrode in a potassium chloride/citrate solution. Besides their size, their agglomeration state in solution is also investigated solely by electrochemical means and subsequent data analysis. Validation of this new approach to nanoparticle agglomeration studies is(More)
Silver nanoparticles (AgNP) are currently defined as emerging pollutants in surface water ecosystems. Whether the toxic effects of AgNP towards freshwater organisms are fully explainable by the release of ionic silver (Ag(+)) has not been conclusively elucidated. Long-term effects to benthic microbial communities (periphyton) that provide essential(More)
  • 1