Learn More
A family of antioxidant proteins, the peroxiredoxins, serve two purposes, detoxification of reactive oxygen species and cellular signaling. Among the three peroxiredoxins of Caenorhabditis elegans (CePrx1-3), CePrx2 was found to have a very unusual expression pattern, restricted to only two types of pharyngeal neurons; namely, the single pharyngeal(More)
Although the prevalence of inflammatory airway diseases is steadily growing, our knowledge regarding the underlying molecular and cellular mechanisms is fragmentary. The striking simplicity of the fruit fly's airway epithelium, which is composed of epithelial cells only, justifies its use as a model to study general features and response characteristics of(More)
Airway epithelial cells not only constitute a physical barrier, but also the first line of defence against airborne pathogens. At the same time, they are constantly exposed to reactive oxygen species. Therefore, airway epithelia cells have to possess a sophisticated innate immune system and a molecular armamentarium to detoxify reactive oxygen species. It(More)
Genetic research has revealed a number of asthma-susceptibility genes. In addition, with the development of genome-wide association studies, which has gained unprecedented momentum, the roles of many more candidate genes in asthma will be uncovered. In parallel with such genetic insight, a detailed understanding of the function of susceptibility genes in(More)
Leishmania promastigote cells transmitted by the insect vector get phagocytosed by macrophages and convert into the amastigote form. During development and transformation, the parasites are exposed to various concentrations of reactive oxygen species, which can induce programmed cell death (PCD). We show that a mitochondrial peroxiredoxin (LdmPrx) protects(More)
Asthma and COPD are the most relevant inflammatory diseases of the airways. In western countries they show a steeply increasing prevalence, making them to a severe burden for health systems around the world. Although these diseases are typically complex ones, they have an important genetic component. Genome-wide association studies have provided us with a(More)
Pathogens represent a universal threat to other living organisms. Most organisms express antimicrobial proteins and peptides, such as lysozymes, as a protection against these challenges. The nematode Caenorhabditis elegans harbours 15 phylogenetically diverse lysozyme genes, belonging to two distinct types, the protist- or Entamoeba-type (lys genes) and the(More)
The intestinal immune system is tailored to fight pathogens effectively while tolerating the indigenous microbiota. Impairments of this homeostatic interaction may contribute to the etiology of various diseases including inflammatory bowel diseases. However, the molecular architecture underlying this complex regulatory interaction is not well understood.(More)
  • 1