Kerstin A. Wolff

Learn More
Antibiotic resistance and virulence of pathogenic mycobacteria are phenotypically associated, but the underlying genetic linkage has not been known. Here we show that PknG, a eukaryotic-type protein kinase previously found to support survival of mycobacteria in host cells, is required for the intrinsic resistance of mycobacterial species to multiple(More)
Survival of M. tuberculosis in host macrophages requires the eukaryotic-type protein kinase G, PknG, but the underlying mechanism has remained unknown. Here, we show that PknG is an integral component of a novel redox homeostatic system, RHOCS, which includes the ribosomal protein L13 and RenU, a Nudix hydrolase encoded by a gene adjacent to pknG. Studies(More)
The MtrAB signal transduction system, which participates in multiple cellular processes related to growth and cell wall homeostasis, is the only two-component system known to be essential in Mycobacterium. In a screen for antibiotic resistance determinants in Mycobacterium smegmatis, we identified a multidrug-sensitive mutant with a transposon insertion in(More)
Tuberculosis (TB) has become a curable disease, thanks to the discovery of antibiotics. However, it has remained one of the most difficult infections to treat. Most current TB regimens consist of 6-9 months of daily doses of four drugs that are highly toxic to patients. The purpose of these lengthy treatments is to completely eradicate Mycobacterium(More)
The current emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis calls for novel treatment strategies. Recently, BlaC, the principal β-lactamase of Mycobacterium tuberculosis, was recognized as a potential therapeutic target. The combination of meropenem and clavulanic acid, which inhibits BlaC, was found to be effective(More)
Mycobacterium tuberculosis is intrinsically resistant to most β-lactam antibiotics because of the constitutive expression of the blaC-encoded β-lactamase. This enzyme has extremely high activity against penicillins and cephalosporins, but weaker activity against carbapenems. The enzyme can be inhibited by clavulanate, avibactam, and boronic acids. In this(More)
The methylfolate trap, a metabolic blockage associated with anemia, neural tube defects, Alzheimer's dementia, cardiovascular diseases, and cancer, was discovered in the 1960s, linking the metabolism of folate, vitamin B12, methionine and homocysteine. However, the existence or physiological significance of this phenomenon has been unknown in bacteria,(More)
Here we describe a chemical biology strategy performed in Staphylococcus aureus and Staphylococcus epidermidis to identify MnaA, a 2-epimerase that we demonstrate interconverts UDP-GlcNAc and UDP-ManNAc to modulate substrate levels of TarO and TarA wall teichoic acid (WTA) biosynthesis enzymes. Genetic inactivation of mnaA results in complete loss of WTA(More)
Antifolates inhibit de novo folate biosynthesis, whereas ethionamide targets the mycolate synthetic pathway in Mycobacterium tuberculosis. These antibiotics are effective against M. tuberculosis but their use has been hampered by concerns over toxicity and low therapeutic indexes. With the increasing spread of drug-resistant forms, interest in using old(More)
  • 1