Kersti Hermansson

  • Citations Per Year
Learn More
The structure of the hydrated calcium(II) ion in aqueous solution has been studied by means of extended X-ray absorption fine structure spectroscopy (EXAFS), large-angle X-ray scattering (LAXS), and molecular dynamics (MD) methods. The EXAFS data displayed a broad and asymmetric distribution of the Ca-O bond distances with the centroid at 2.46(2) A. LAXS(More)
Hydroxylation Structure and Proton Transfer Reactivity at the Zinc Oxide Water Interface David Raymand, Adri C.T. van Duin, William A. Goddard, III, Kersti Hermansson, and Daniel Spångberg* Materials Chemistry, The Ångstr€om Laboratory, Uppsala University, Box 538, S-751 21 Uppsala, Sweden Department of Mechanical and Nuclear Engineering, The Pennsylvania(More)
This work presents a ReaxFF reactive force-field for use in molecular dynamics simulations of the ZnO– water system. The force-field parameters were fitted to a data-set of energies, geometries and charges derived from quantum-mechanical B3LYP calculations. The presented ReaxFF model provides a good fit to the QM reference data for the ZnO–water system that(More)
The optimized geometry and energetic properties of Fe(D2O)n 3+ clusters, with n = 4 and 6, have been studied with density-functional theory calculations and the BLYP functional, and the hydration of a single Fe 3+ ion in a periodic box with 32 water molecules at room temperature has been studied with Car-Parrinello molecular dynamics and the same(More)
We examine the real space structure and the electronic structure (particularly Ce4f electron localization) of oxygen vacancies in CeO(2) (ceria) as a function of U in density functional theory studies with the rotationally invariant forms of the LDA+U and GGA+U functionals. The four nearest neighbor Ce ions always relax outwards, with those not carrying(More)
The solvation shell structure and dynamics of a single Cu2+ ion in a periodic box with 32 water molecules under ambient conditions has been investigated using Car-Parrinello molecular dynamics simulations in a time-window of 18 ps. Five-fold coordination with four equidistant equatorial water molecules at 2.00 A and one axial water molecule at 2.45 A from(More)
The O-polysaccharide from Vibrio cholerae O:5 has been investigated, using NMR spectroscopy as the main method. Fast atom bombardment mass spectrometry (FABMS) studies of fragments obtained on treatment with anhydrous hydrogen fluoride or methanolic hydrogen chloride gave further structural information. Some structural features were also determined by(More)
The average OH stretching vibrational frequency for the water molecules in the first hydration shell around a Li(+) ion in a dilute aqueous solution was calculated by a hybrid molecular dynamics + quantum-mechanical ("MD + QM") approach. Using geometry configurations from a series of snapshots from an MD simulation, the anharmonic, uncoupled OH stretching(More)
The atomic and electronic structure of (111), (110), and (100) surfaces of ceria (CeO2) were studied using density-functional theory within the generalized gradient approximation. Both stoichiometric surfaces and surfaces with oxygen vacancies (unreduced and reduced surfaces, respectively) have been examined. It is found that the (111) surface is the most(More)
Molecular dynamics and electric field strength simulations are performed in order to quantify the structural, dynamic, and vibrational properties of non-H-bonded (dangling) OH groups in the hydration shell of neopentane, as well as in bulk water. The results are found to be in good agreement with the experimentally observed high-frequency (∼3660 cm(-1)) OH(More)