Kersten Schmidt

Learn More
We propose transmission conditions of order 1, 2 and 3 approximating the shielding behaviour of thin conducting curved sheets for the magneto-quasistatic eddy current model in 2D. This model reduction applies to sheets whose thicknesses ε are at the order of the skin depth or essentially smaller. The sheet has itself not to be resolved, only its midline is(More)
A synthetic aperture radar (SAR) system requires external absolute calibration so that radiometric measurements can be exploited in numerous scientific and commercial applications. Besides estimating a calibration factor, metrological standards also demand the derivation of a respective calibration uncertainty. This uncertainty is currently not(More)
The optimization of PhC waveguides is a key issue for successfully designing PhC devices. Since this design task is computationally expensive, efficient methods are demanded. The available codes for computing photonic bands are also applied to PhC waveguides. They are reliable but not very efficient, which is even more pronounced for dispersive material. We(More)
Resolving thin conducting sheets for shielding or even skin layers inside by the mesh of numerical methods like the finite element method (FEM) can be avoided by using impedance transmission conditions (ITCs). Those ITCs shall provide an accurate approximation for small sheet thicknesses d, where the accuracy is best possible independent of the conductivity(More)
The computation of guided modes in photonic crystal wave-guides is a key issue in the process of designing devices in photonic communications. Existing methods, such as the super-cell method, provide an efficient computation of well-confined modes. However, if the modes are not well-confined, the modelling error of the super-cell method becomes prohibitive(More)
We propose a new solution methodology to incorporate symmetric local absorbing boundary conditions involving higher tangential derivatives into a finite element method for solving the 2D Helmholtz equations. The main feature of the method is that it does not requires the introduction of auxiliary variable nor the use of basis functions of higher regularity(More)