Kerrie-Anne Ho

Learn More
BACKGROUND Translation of transcranial direct current stimulation (tDCS) from research to clinical practice is hindered by a lack of consensus on optimal stimulation parameters, significant inter-individual variability in response, and in sufficient intra-individual reliability data. OBJECTIVES Inter-individual differences in response to anodal tDCS at a(More)
Transcranial direct current stimulation (tDCS) is a neuromodulatory technique which involves passing a mild electric current to the brain through electrodes placed on the scalp. Several clinical studies suggest that tDCS may have clinically meaningful efficacy in the treatment of depression. The objective of this study was to simulate and compare the(More)
BACKGROUND Transcranial direct current stimulation (tDCS) is gaining attention as an effective new treatment for major depression. Little is known, however, of the duration of antidepressant effects following acute treatment. In this study, we describe the use of continuation tDCS treatment for up to 6 months following clinical response to an acute(More)
BACKGROUND Cutaneous discomfort is typically reported during transcranial direct current stimulation (tDCS), restricting the current intensity and duration at which tDCS can be applied. It is commonly thought that current density is associated with the intensity of perceived cutaneous perception such that larger electrodes with a lower current density(More)
BACKGROUND Typically, transcranial direct current stimulation (tDCS) treatments for depression have used bifrontal montages with anodal (excitatory) stimulation targeting the left dorsolateral prefrontal cortex (DLPFC). There is limited research examining the effects of alternative electrode montages. OBJECTIVE/HYPOTHESIS This pilot study aimed to examine(More)
OBJECTIVES This study aimed to examine a bitemporal (BT) transcranial direct current stimulation (tDCS) electrode montage for the treatment of depression through a clinical pilot study and computational modeling. The safety of repeated courses of stimulation was also examined. METHODS Four participants with depression who had previously received multiple(More)
BACKGROUND Current density is considered an important factor in determining the outcomes of tDCS, and is determined by the current intensity and electrode size. Previous studies examining the effect of these parameters on motor cortical excitability with small sample sizes reported mixed results. OBJECTIVE/HYPOTHESIS This study examined the effect of(More)
OBJECTIVE The objective of this study was to examine the effect of transcranial random noise stimulation (tRNS) with and without a direct current (DC) offset on motor cortical excitability and compare results to transcranial DC stimulation (tDCS). METHODS Fifteen healthy participants were tested in a within-subjects design. Motor-evoked potentials were(More)
Depression is frequent in old age and its prognosis is poorer than in younger populations. The use of pharmacological treatments in geriatric depression is limited by specific pharmacodynamic age-related factors that can diminish tolerability and increase the risk of drug interactions. The possibility of modulating cerebral activity using brain stimulation(More)
BACKGROUND Animal studies suggest that neural plasticity may play a role in the antidepressant effects of a single ketamine dose. However, the potential effects of repeated ketamine treatments on human neuroplasticity are unknown. METHODS This pilot RCT study measured plasticity-induced changes before and after a ketamine course, in three(More)
  • 1