Kerriann Greenhalgh

Learn More
This report describes the preparation of polyacrylate nanoparticles in which an N-thiolated beta-lactam antibiotic is covalently conjugated onto the polymer framework. These nanoparticles are formed in water by emulsion polymerization of an acrylated antibiotic pre-dissolved in a liquid acrylate monomer (or mixture of co-monomers) in the presence of sodium(More)
This report describes the preparation of antibacterially active emulsified polyacrylate nanoparticles in which a penicillin antibiotic is covalently conjugated onto the polymeric framework. These nanoparticles were prepared in water by emulsion polymerization of an acrylated penicillin analogue pre-dissolved in a 7:3 (w:w) mixture of butyl acrylate and(More)
We have recently reported on a new nanomedicine containing antibiotic-conjugated polyacrylate nanoparticles, which has shown activity against methicillin-resistant Staphylococcus aureus (MRSA) in vitro and no cytotoxicity toward human dermal cells. The water-based nanoparticle emulsion is capable of solubilizing lipophilic antibiotics for systemic(More)
Recent research in our laboratory has centered on studies of polyacrylate and polyacrylamide nanoparticle emulsions for use in antibiotic delivery. Our goal is to develop these nanoparticle emulsions for treatment of life-threatening bacterial infections such as those caused by methicillin-resistant Staphylococcus aureus. For this intended application it is(More)
N-thiolated beta-lactams had previously been shown to have antibacterial activity against a narrow selection of pathogenic bacteria including Staphylococcus aureus and Bacillus anthracis, as well as apoptotic-inducing activity in a variety of human cancer cell lines. We now have found that these lactams also possess antifungal activity against Candida and(More)
This study describes the antibacterial properties of synthetically produced mixed aryl-alkyl disulfide compounds as a means to control the growth of Staphylococcus aureus and Bacillus anthracis. Some of these compounds exerted strong in vitro bioactivity. Our results indicate that among the 12 different aryl substituents examined, nitrophenyl derivatives(More)
  • 1