Kerline Joachim

Learn More
The mechanisms regulating the generation of cell diversity in the mammalian cerebral cortex are beginning to be elucidated. In that regard, Hairy/Enhancer of split (Hes) 1 and 5 are basic helix-loop-helix (bHLH) factors that inhibit the differentiation of pluripotent cortical progenitors into neurons. In contrast, a related Hes family member termed Hes6(More)
Transcriptional corepressors of the Groucho (Gro)/TLE family play important roles during a variety of developmental pathways, including neuronal differentiation. In particular, they act as negative regulators of neurogenesis, together with Hairy/Enhancer of split (Hes) DNA-binding proteins. The interaction with Hes1 leads to Gro/TLE hyperphosphorylation and(More)
Transcriptional corepressors of the Groucho/transducin-like Enhancer of split (Gro/TLE) family are involved in a variety of cell differentiation mechanisms in both invertebrates and vertebrates. They become recruited to specific promoter regions by forming complexes with a number of different DNA-binding proteins thereby contributing to the regulation of(More)
Hairy/Enhancer of split (Hes) 6 is a basic helix-loop-helix protein that interacts with the transcriptional co-repressor, Groucho, and antagonizes the neural functions of the Notch pathway. More specifically, mouse Hes6 regulates cerebral corticogenesis by promoting neurogenesis and suppressing astrocyte differentiation. The molecular mechanisms underlying(More)
BACKGROUND Transcriptional co-repressors of the Groucho/transducin-like Enhancer of split (Gro/TLE) family regulate the expression of a variety of genes and are involved in numerous developmental processes in both invertebrate and vertebrate species. More specifically, Gro/TLE1 participates in mechanisms that inhibit/delay the differentiation of cerebral(More)
The chemistry and biology of novel TXA2(TP)-receptor agonists based on the prostanoid skeleton is described and structure-activity-relationships are discussed. One compound,(5Z,13E), (9R,15R)-9-fluoro-15-hydroxy-16-phenoxy-17,18,19,20-tetranor- 5,13-prostadienoic acid (33), was identified which is 10 times more potent than the standard TP-receptor against U(More)
  • 1