Kerkeni Nizar

  • Citations Per Year
Learn More
Using artificial neural networks for Electroencephalogram (EEG) signal interpretation is a very challenging tasks for several reasons. The first class of reasons refers to the nature of data. Such signals are complex and difficult to process. The second class of reasons refers to the nature of underlying knowledge. Expertise is manifold and difficult to(More)
Being able to analyze and interpret signal coming from electroencephalogram (EEG) recording can be of high interest for many applications including medical diagnosis and Brain-Computer Interfaces. Indeed, human experts are today able to extract from this signal many hints related to physiological as well as cognitive states of the recorded subject and it(More)
  • 1