Learn More
We have developed a new procedure for fabricating fused-silica emitters for electrospray ionization-mass spectrometry (ESI-MS) in which the end of a bare fused-silica capillary is immersed into aqueous hydrofluoric acid, and water is pumped through the capillary to prevent etching of the interior. Surface tension causes the etchant to climb the capillary(More)
Arrays of microelectrospray emitters were fabricated on polycarbonate substrates using a laser etching technique. Stable multielectrosprays were successfully generated in the liquid flow rate range relevant to mass spectrometric applications. Comparison of electrosprays generated from the microfabricated emitter array and conventional fused-silica(More)
Field asymmetric waveform ion mobility spectrometry (FAIMS) is emerging as a major analytical tool, especially in conjunction with mass spectrometry (MS), conventional ion mobility spectrometry (IMS), or both. In particular, FAIMS is used to separate protein or peptide conformers prior to characterization by IMS, MS/MS, or H/D exchange. High electric fields(More)
We describe the application of capillary liquid chromatography (LC) time-of-flight (TOF) mass spectrometric instrumentation for the rapid characterization of microbial proteomes. Previously (Lipton et al., Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 11049) the peptides from a series of growth conditions of Deinococcus radiodurans have been characterized using(More)
A nanoelectrospray ionization mass spectrometry (ESI-MS) source and interface has been designed that enables efficient ion production and transmission in a 30 Torr pressure environment using solvents compatible with typical reversed-phase liquid chromatography (RPLC) separations. In this design, the electrospray emitter is located inside the mass(More)
The ion mobility spectrometry (IMS) methods are grouped into conventional IMS, based on the absolute ion mobility, and differential or field asymmetric waveform IMS (FAIMS), based on mobility differences between strong and weak electric fields. A key attraction of FAIMS is substantial orthogonality to mass spectrometry (MS). Although several FAIMS/MS(More)
Understanding the 3-D structure and dynamics of proteins and other biological macromolecules in various environments is among the central challenges of chemistry. Electrospray ionization can often transfer ions from solution to gas phase with only limited structural distortion, allowing their profiling using mass spectrometry and other gas-phase approaches.(More)
Poly(dimethylsiloxane) (PDMS) is a widely used substrate for microfluidic devices, as it enables facile fabrication and has other distinctive properties. However, for applications requiring highly sensitive nanoelectrospray ionization mass spectrometry (nanoESI-MS) detection, the use of PDMS microdevices has been hindered by a large chemical background in(More)
The utility of ion mobility spectrometry (IMS) for separation of mixtures and structural characterization of ions has been demonstrated extensively, including in biological and nanoscience contexts. A major attraction of IMS is its speed, several orders of magnitude greater than that of condensed-phase separations. Nonetheless, IMS combined with mass(More)
Sensitive detection of low-abundance proteins in complex biological samples has typically been achieved by immunoassays that use antibodies specific to target proteins; however, de novo development of antibodies is associated with high costs, long development lead times, and high failure rates. To address these challenges, we developed an antibody-free(More)