Learn More
Remote-sensing reflectance (R(rs)), which is defined as the ratio of water-leaving radiance (L(w)) to downwelling irradiance just above the surface (E(d)(0⁺)), varies with both water constituents (including bottom properties of optically-shallow waters) and angular geometry. L(w) is commonly measured in the field or by satellite sensors at convenient(More)
For optically deep waters, remote-sensing reflectance (r(rs)) is traditionally expressed as the ratio of the backscattering coefficient (b(b)) to the sum of absorption and backscattering coefficients (a + b(b)) that multiples a model parameter (g, or the so-called f'/Q). Parameter g is further expressed as a function of b(b)/(a + b(b)) (or b(b)/a) to(More)
[1] Penetration of solar radiation in the ocean is determined by the attenuation coefficient (Kd( )). Following radiative transfer theory, Kd is a function of angular distribution of incident light and water’s absorption and backscattering coefficients. Because these optical products are now generated routinely from satellite measurements, it is logical to(More)
A new radiometric term named as usable solar radiation (USR) is defined to represent the spectrally integrated solar irradiance in the spectral window of 400–560 nm. Through numerical simulations of optically deep waters covering a wide range of optical properties, it is found that the diffuse attenuation coefficient of downwelling USR, Kd(USR), is nearly a(More)
In examining the dependence of the sea surface reflectance of skylight ρs on sky conditions, wind speed, solar zenith angle, and viewing geometry, Mobley [Appl. Opt.38, 7442 (1999).10.1364/AO.38.007442] assumed ρs is independent of wavelength. Lee et al. [Opt. Express18, 26313 (2010).10.1364/OE.18.026313] showed experimentally that ρs does vary spectrally(More)