Keounyup Chu

Learn More
Vehicle position estimation for intelligent vehicles requires not only highly accurate position information but reliable and continuous information provision as well. A low-cost Global Positioning System (GPS) receiver has widely been used for conventional automotive applications, but it does not guarantee accuracy, reliability, or continuity of position(More)
In this paper, a real-time path-planning algorithm that provides an optimal path for off-road autonomous driving with static obstacles avoidance is presented. The proposed planning algorithm computes a path based on a set of predefined waypoints. The predefined waypoints provide the base frame of a curvilinear coordinate system to generate path candidates(More)
This paper presents a precise localization method for autonomous driving systems by correcting the GPS bias error. Since GPS errors have systematic noise properties that change slowly with time, a stand-alone GPS cannot be used for localization of an autonomous vehicle. To compensate for this systematic bias error, several types of additional sources of(More)
A vehicle localization system can be extremely useful for intelligent transformation systems (ITS) such as advanced driver assistance systems (ADASs), emergency vehicle notification systems, and collision avoidance systems. To optimize the performance of vehicle localization systems, localization algorithms that analyze multi-sensor data processed using a(More)
This paper proposes a distributed vehicle state estimation system to improve the performance of vehicle positioning using Global Positioning System (GPS) and in-vehicle sensor components. The distributed architecture of the estimation system can reduce the computational complexity of high-order estimation by dividing it into several small-order estimation(More)
  • 1