Learn More
We identified and characterized the full-length cDNA sequences encoding two acetylcholinesterases (ClAChE1 and ClAChE2) and a salivary gland-specific cholinesterase-like protein (ClSChE) from the common bed bug, Cimex lectularius. All three cholinesterase genes (Clac1, Clace2 and Clsce) have conserved motifs, including a catalytic triad, a choline-binding(More)
Two point mutations (V419L and L925I) in the voltage-sensitive sodium channel alpha-subunit gene have been identified in deltamethrin-resistant bed bugs. A quantitative sequencing (QS) protocol was developed to establish a population-based genotyping method as a molecular resistance-monitoring tool based on the frequency of the two mutations. The nucleotide(More)
We examined the molecular and enzymatic properties of two acetylcholinesterases (AChEs; ClAChE1 and ClAChE2) from the common bed bug, Cimex lectularius. Native polyacrylamide gel electrophoresis followed by activity staining and Western blotting revealed that ClAChE1 is the main catalytic enzyme and is abundantly expressed in various tissues. Both ClAChEs(More)
The ATP-binding cassette (ABC) transporters represent a superfamily of proteins that have important physiological roles in both prokaryotes and eukaryotes. In insects, ABC transporters have previously been implicated in insecticide resistance. The 91-R strain of Drosophila melanogaster has been intensely selected with DDT over six decades. A recent(More)
Adaptation of insect phenotypes for survival after exposure to xenobiotics can result from selection at multiple loci with additive genetic effects. To the authors' knowledge, no selective sweep analysis has been performed to identify such loci in highly dichlorodiphenyltrichloroethane (DDT) resistant insects. Here we compared a highly DDT resistant(More)
The Drosophila melanogaster 91-R and 91-C strains are of common origin, however, 91-R has been intensely selected for dichlorodiphenyltrichloroethane (DDT) resistance over six decades while 91-C has been maintained as the non-selected control strain. These fly strains represent a unique genetic resource to understand the accumulation and fixation of(More)
Insecticide-resistant Drosophila melanogaster strains represent a resource for the discovery of the underlying molecular mechanisms of cytochrome P450 constitutive over-expression, even if some of these P450s are not directly involved in the resistance phenotype. For example, in select 4,4'-dichlorodiphenyltrichloroethane (DDT) resistant strains the(More)
  • 1