Learn More
Neural activity results in long term changes that underlie synaptic plasticity. To examine the molecular basis of activity-dependent plasticity, we have used differential cloning techniques to identify genes that are rapidly induced in brain neurons by synaptic activity. Here, we identify a novel cadherin molecule Arcadlin (activity-regulated cadherin-like(More)
Previous pharmacological experiments provide conflicting findings that describe both facilitatory and inhibitory effects of neuronal histamine on learning and memory. Here, we examined learning and memory and synaptic plasticity in mice with a null mutation of gene coding histamine H1 or H2 receptor in order to clarify the role of these receptors in(More)
Brain-type fatty acid-binding protein (B-FABP) belongs to a family of intracellular lipid-binding proteins. B-FABP exhibits a binding affinity to long-chain fatty acids (FAs) whose effects on brain functions including development, emotion, learning and memory have been proposed. B-FABP is localized in the ventricular germinal cells in embryonic brain and(More)
The 65-kDa isoform of glutamic acid decarboxylase (GAD65) is believed to play an essential role for GABA synthesis in the central nervous system. Using mice with targeted disruption of the GAD65 gene (GAD65(-/-) mice) we investigated the contribution of GAD65 to GABA synthesis in different brain areas during postnatal development and in adulthood. In the(More)
Living cells spontaneously emit ultraweak light during the process of metabolic reactions associated with the physiological state. The first demonstration of two-dimensional in vivo imaging of ultraweak photon emission from a rat's brain, using a highly sensitive photon counting apparatus, is reported in this paper. It was found that the emission intensity(More)
Like neurons and astrocytes, oligodendrocytes have a variety of neurotransmitter receptors and ion channels. However, except for facilitating the rapid conduction of action potentials by forming myelin and buffering extracellular K(+), little is known about the direct involvement of oligodendrocytes in neuronal activities. To investigate their physiological(More)
The effects of both the activation and the blockade of D1 or D2 dopamine receptors on long-term depression (LTD) of synaptic transmission, and the involvement of NMDA and GABA receptors in LTD, were investigated in CA1 neurons of rat hippocampal slices. Low-frequency stimulation (LFS, 450 pulses at 1 Hz) produced LTD of the slope of field EPSPs (-14.3%,(More)
1. Long-term potentiation (LTP) of synaptic efficacy comprises two components: a synaptic component consisting of increased field excitatory postsynaptic potentials (EPSPs), and a component consisting of a larger population spike amplitude for a given EPSP size (E-S potentiation). In hippocampal CA1 neurons, delivery of three weak bursts (5 pulses at 100(More)
To further characterize diurnal changes in the rhythm in adrenal responsiveness to ACTH, we have measured ACTH distribution volume, MCR, and t 1/2. These do not change between morning and evening in groups of untreated, dexamethasone-pretreated, or hypophysectomized female rats. To characterize the nature of the change in adrenal responsiveness to ACTH,(More)
Oligodendrocytes have received much attention in relation to neurological and psychiatric disorders. The involvement of oligodendrocytes and their myelin in normal brain functions has been suggested by many lines of evidence. The conduction velocity of action potentials along axons is dramatically increased by myelination, that is, the formation of a(More)