Learn More
Previous pharmacological experiments provide conflicting findings that describe both facilitatory and inhibitory effects of neuronal histamine on learning and memory. Here, we examined learning and memory and synaptic plasticity in mice with a null mutation of gene coding histamine H1 or H2 receptor in order to clarify the role of these receptors in(More)
Brain-type fatty acid-binding protein (B-FABP) belongs to a family of intracellular lipid-binding proteins. B-FABP exhibits a binding affinity to long-chain fatty acids (FAs) whose effects on brain functions including development, emotion, learning and memory have been proposed. B-FABP is localized in the ventricular germinal cells in embryonic brain and(More)
Like neurons and astrocytes, oligodendrocytes have a variety of neurotransmitter receptors and ion channels. However, except for facilitating the rapid conduction of action potentials by forming myelin and buffering extracellular K(+), little is known about the direct involvement of oligodendrocytes in neuronal activities. To investigate their physiological(More)
Oligodendrocytes have received much attention in relation to neurological and psychiatric disorders. The involvement of oligodendrocytes and their myelin in normal brain functions has been suggested by many lines of evidence. The conduction velocity of action potentials along axons is dramatically increased by myelination, that is, the formation of a(More)
Plastic changes in white matter have received considerable attention in relation to normal cognitive function and learning. Oligodendrocytes and myelin, which constitute the white matter in the central nervous system, can respond to neuronal activity with prolonged depolarization of membrane potential and/or an increase in the intracellular Ca(2+)(More)
The role of inositol 1, 4, 5-trisphosphate receptors (IP3Rs) in long-term potentiation (LTP) and long-term depression (LTD) was studied in CA1 neurons in guinea pig hippocampal slices. In standard solution, short tetanic stimulation consisting of 15 pulses at 100 Hz induced LTP, while three short trains of low-frequency stimulation (LFS; 200 pulses at 1 Hz)(More)
1. Temperature-dependent properties of synaptic transmission were studied by recording orthodromic responses of the population spike and excitatory postsynaptic potential in CA1 pyramidal neurons of guinea pig hippocampal slices. 2. Increasing the temperature of the perfusing medium from 30 to 43 degrees C resulted in a decrease in the amplitude of the(More)
The present study has investigated the role of ATP in the induction of synaptic plasticity, using local application of ATP by picopump administration into the stratum radiatum of guinea pig hippocampal region CA1. Excitatory postsynaptic currents (EPSCs) evoked by stimulation of Schaffer collateral/commissural afferents synapsing on CA1 pyramidal cells of(More)
Long-term potentiation (LTP) at hippocampal mossy fiber-CA3 pyramidal neuron synapses was induced in the field excitatory postsynaptic potential (EPSP) by the delivery of HFS (a tetanus of two trains of 100 pulses at 100 Hz with a 10s interval) and was reversed (depotentiated) by a train of LFS of 1000 pulses at 2 Hz applied 60 min later. This(More)
Serotonergic systems were investigated in the frontal cortex of rats with thioacetamide (TAA)-induced acute hepatic encephalopathy (HE). Extracellular basal levels of 5-HT showed no difference between control and HE animals, whereas the levels of 5-HIAA were significantly increased in HE rats. Unlike basal levels, high K+-evoked 5-HT release was(More)