Learn More
Increasing survival of motor neuron 2, centromeric (SMN2) exon 7 inclusion to express more full-length SMN protein in motor neurons is a promising approach to treat spinal muscular atrophy (SMA), a genetic neurodegenerative disease. Previously, we identified a potent 2'-O-(2-methoxyethyl) (MOE) phosphorothioate-modified antisense oligonucleotide (ASO) that(More)
Spinal muscular atrophy (SMA) is a motor neuron disease and the leading genetic cause of infant mortality; it results from loss-of-function mutations in the survival motor neuron 1 (SMN1) gene. Humans have a paralogue, SMN2, whose exon 7 is predominantly skipped, but the limited amount of functional, full-length SMN protein expressed from SMN2 cannot fully(More)
Spinal Muscular Atrophy (SMA) is a motor-neuron disease and the leading genetic cause of infant mortality; it is caused by loss-of-function mutations in the Survival motor neuron 1 (SMN1) gene 1. Humans have a paralog, SMN2, whose exon 7 is predominantly skipped 2 ; the limited amount of functional, full-length SMN it expresses cannot fully compensate for(More)
Survival of motor neuron (SMN) deficiency causes spinal muscular atrophy (SMA), but the pathogenesis mechanisms remain elusive. Restoring SMN in motor neurons only partially rescues SMA in mouse models, although it is thought to be therapeutically essential. Here, we address the relative importance of SMN restoration in the central nervous system (CNS)(More)
We have found that two previously reported exonic mutations in the PINK1 and PARK7 genes affect pre-mRNA splicing. To develop an algorithm to predict underestimated splicing consequences of exonic mutations at the 5' splice site, we constructed and analyzed 31 minigenes carrying exonic splicing mutations and their derivatives. We also examined 189,249(More)
Loss-of-function mutations in SMN1 cause spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. The related SMN2 gene expresses suboptimal levels of functional SMN protein, due to a splicing defect. Many SMA patients reach adulthood, and there is also adult-onset (type IV) SMA. There is currently no animal model for adult-onset SMA, and(More)
Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease caused by the expansion of a polyglutamine (polyQ) tract in ataxin-1 (ATXN1). The pathological hallmarks of SCA1 are the loss of cerebellar Purkinje cells and neurons in the brainstem and the presence of nuclear aggregates containing the polyQ-expanded ATXN1 protein.(More)
Loss-of-function mutations in SMN1 cause spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. Degeneration of alpha-motor neurons that results in progressive paralysis is a pathological hallmark of SMA. Recently, peripheral-tissue involvement has also been reported in SMA. Patients have low levels of functional SMN which is attributed(More)
(2013), Inhibition of monoamine oxidase A and stimulation of behavioural activities in mice by the inactive prodrug form of the anti-influenza agent oseltamivir, British Journal of Pharmacology, 2013. (2012) Alterations in grooming activity and syntax in heterozygous SERT and BDNF knockout mice: The utility of behavior-recognition tools to characterize(More)
  • 1