Learn More
GPGPU (General-purpose computing on graphics processing units) has several difficulties when used in cloud environment, such as narrow bandwidth, higher cost, and lower security, compared with computation using only CPUs. Most high performance computing applications require huge communication between nodes, and do not fit a cloud environment, since network(More)
The interaction between the electric field E and spins in multiorbital Mott insulators is studied theoretically. We find a generic coupling mechanism, which works for all crystal lattices and which does not involve relativistic effects. It couples E to the "internal" electric field e originating from the dynamical Berry phase. We discuss several effects of(More)
Graphene is a two-dimensional carbon material with a honeycomb lattice and Dirac-like low-energy excitations. When Zeeman and spin-orbit interactions are neglected, its Landau levels are fourfold degenerate, explaining the 4e2/h separation between quantized Hall conductivity values seen in recent experiments. In this Letter we derive a criterion for the(More)
We study theoretically the role of quenched magnetic disorder at the surface of topological insulators by numerical simulation and scaling analysis based on the massive Dirac fermion model. This addresses the problem of Anderson localization on chiral anomaly. It is found that all the surface states are localized, while the transverse conductivity is(More)
The beta function of a two-dimensional massless Dirac Hamiltonian subject to a random scalar potential, which, e.g., underlies theoretical descriptions of graphene, is computed numerically. Although it belongs to, from a symmetry standpoint, the two-dimensional symplectic class, the beta function monotonically increases with decreasing conductance. We also(More)
We report successful spin injection into the surface states of topological insulators by using a spin pumping technique. By measuring the voltage that shows up across the samples as a result of spin pumping, we demonstrate that a spin-electricity conversion effect takes place in the surface states of bulk-insulating topological insulators(More)
Interaction driven integer quantum-Hall effects are anticipated in graphene bilayers because of the near degeneracy of the eight Landau levels which appear near the neutral system Fermi level. We predict that an intra-Landau-level cyclotron resonance signal will appear at some odd-integer filling factors, accompanied by collective modes which are nearly(More)
Taking advantage of ultrahigh electric field generated in electric-double-layer transistors (EDLTs), we investigated spin-orbit interaction (SOI) and its modulation in epitaxial trilayer graphene. It was found in magnetotransport that the dephasing length L(φ) and spin relaxation length L(so) of carriers can be effectively modulated with gate bias. As a(More)
We search for dynamical magnetoelectric phenomena in three-dimensional correlated systems with spin-orbit coupling. We focus on the antiferromagnetic insulator phases where the dynamical axion field is realized by the fluctuation of the antiferromagnetic order parameter. It is shown that the dynamical chiral magnetic effect, an alternating current(More)