Learn More
Synaptic remodeling has been postulated as a mechanism underlying synaptic plasticity, and cadherin adhesion molecules are thought to be a regulator of such a process. We examined the effects of cadherin blockage on synaptogenesis in cultured hippocampal neurons. This blockade resulted in alterations of dendritic spine morphology, such as filopodia-like(More)
The cadherin-catenin complex is the major machinery for cell-cell adhesion in many animal species. This complex in general associates with actin fibers at its cytoplasmic side, organizing the adherens junction (AJ). In epithelial cells, the AJ encircles the cells near their apical surface and forms the "zonula adherens" or "adhesion belt." The mechanism as(More)
Morphological plasticity of dendritic spines and synapses is thought to be crucial for their physiological functions. Here we show that alpha N-catenin, a linker between cadherin adhesion receptors and the actin cytoskeleton, is essential for stabilizing dendritic spines in rodent hippocampal neurons in culture. In the absence of alpha N-catenin, spine(More)
The canonical Wnt-beta-catenin signaling pathway is important for a variety of developmental phenomena as well as for carcinogenesis. Here, we show that, in hippocampal neurons, NMDA-receptor-dependent activation of calpain induced the cleavage of beta-catenin at the N terminus, generating stable, truncated forms. These beta-catenin fragments accumulated in(More)
A synapse is the connection between neurons that joins an axon of one neuron to the dendrite of another. One class of synapses is formed at the contact point between an axon and a small protrusion from a dendrite, called a dendritic spine. These spines are motile and deformable, which indicates that synaptic functions are controlled, at least in part, by(More)
Neurons can change their gene expression patterns according to the inputs they have received. This activity-dependent gene regulation mechanism plays an important role in the formation of neural circuits during development. Further, by regulating the synaptic plasticity, this mechanism may function as an essential one for each organism to adapt flexibly to(More)
α-Catenin is an actin- and vinculin-binding protein that regulates cell-cell adhesion by interacting with cadherin adhesion receptors through β-catenin, but the mechanisms by which it anchors the cadherin-catenin complex to the actin cytoskeleton at adherens junctions remain unclear. Here we determined crystal structures of αE-catenin in the autoinhibited(More)
  • 1