Kensuke Furukawa

Learn More
PKClambda is implicated as a downstream effector of PI3K in insulin action. We show here that mice that lack PKClambda specifically in the liver (L-lambdaKO mice), produced with the use of the Cre-loxP system, exhibit increased insulin sensitivity as well as a decreased triglyceride content and reduced expression of the sterol regulatory element-binding(More)
Desulfitobacterium strains have the ability to dechlorinate halogenated compounds under anaerobic conditions by dehalorespiration. The complete genome of the tetrachloroethene (PCE)-dechlorinating strain Desulfitobacterium hafniense Y51 is a 5,727,534-bp circular chromosome harboring 5,060 predicted protein coding sequences. This genome contains only two(More)
The transcription factor, signal transducer and activator of transcription-3 (STAT-3) contributes to various physiological processes. Here we show that mice with liver-specific deficiency in STAT-3, achieved using the Cre-loxP system, show insulin resistance associated with increased hepatic expression of gluconeogenic genes. Restoration of hepatic STAT-3(More)
Penicillium herquei IFO 4674 is a filamentous fungus that produces a large amount of hydrolases for fibrous polysaccharides. We purified two beta-xylosidases, S1 and S2. The molecular masses of S1 and S2 determined by MALDI-TOF-MS were 103,700 and 37,460 Da. The optimum pHs of S1 and S2 were 4.0 and 6.5, respectively. By several kinds of alcohols,(More)
Biphenyl-utilizing soil bacteria are ubiquitously distributed in the natural environment. They cometabolize a variety of polychlorinated biphenyl (PCB) congeners to chlorobenzoic acids through a 2,3-dioxygenase pathway, or alternatively through a 3,4-dioxygenase system. Thebph genes coding for the metabolism of biphenyl have been cloned from several(More)
Biphenyl dioxygenase (Bph Dox) is responsible for the initial dioxygenation step during the metabolism of biphenyl. The large subunit (BphA1) of Bph Dox plays a crucial role in the determination of the substrate specificity of biphenyl-related compounds, including polychlorinated biphenyls (PCBs). Based on crystallographic analyses of naphthalene(More)
The tetrachloroethene (PCE) reductive dehalogenase (encoded by the pceA gene and designated PceA dehalogenase) of Desulfitobacterium sp. strain Y51 was purified and characterized. The expression of the enzyme was highly induced in the presence of PCE and trichloroethene (TCE). The purified enzyme catalyzed the reductive dehalogenation of PCE via TCE to(More)
Some anaerobic bacteria can efficiently eliminate one or more halide atoms from halogenated compounds such as chlorophenols and chloroethenes through reductive dehalogenation. During this process, the bacteria utilize halogenated compounds as the terminal electron acceptors in their anaerobic respiration, called dehalorespiration, to yield energy for(More)
A strain of Pseudomonas paucimobilis (strain Q1) capable of utilizing biphenyl was isolated from soil. This strain grew not only on substituted biphenyls, but also on salicylate, xylene or toluene or both (xylene/toluene), and substituted benzoates. Evidence is presented that the catabolism of biphenyl, xylene/toluene, and salicylate is regulated by a(More)
A novel alkaliphilic Nocardiopsis sp., strain TOA-1, was isolated from a tile-joint of a bathroom. Strain TOA-1 produced a variety of alkaline hydrolytic enzymes. An alkaline protease, designated NAPase, was purified and characterized. NAPase had a very high keratinolytic activity and high stability under acidic conditions.