Kenneth S. Gresham

Learn More
Mutations in cardiac myosin binding protein C (MyBP-C) are a common cause of familial hypertrophic cardiomyopathy (FHC). The majority of MyBP-C mutations are expected to reduce MyBP-C expression; however, the consequences of MyBP-C deficiency on the regulation of myofilament function, Ca²⁺ homeostasis, and in vivo cardiac function are unknown. To elucidate(More)
Cardiac myosin binding protein-C phosphorylation plays an important role in modulating cardiac muscle function and accelerating contraction. It has been proposed that Ser282 phosphorylation may serve as a critical molecular switch that regulates the phosphorylation of neighbouring Ser273 and Ser302 residues, and thereby govern myofilament contractile(More)
Enhanced cardiac contractile function with increased sarcomere length (SL) is, in part, mediated by a decrease in the radial distance between myosin heads and actin. The radial disposition of myosin heads relative to actin is modulated by cardiac myosin binding protein-C (cMyBP-C), suggesting that cMyBP-C contributes to the length-dependent activation (LDA)(More)
Through its ability to interact with both the thick and thin filament proteins within the sarcomere, cardiac myosin binding protein-C (cMyBP-C) regulates the contractile properties of the myocardium. The central regulatory role of cMyBP-C in heart function is emphasized by the fact that a large proportion of inherited hypertrophic cardiomyopathy cases in(More)
Decreased expression of cardiac myosin binding protein-C (cMyBP-C) in the myocardium is thought to be a contributing factor to hypertrophic cardiomyopathy in humans, and the initial molecular defect is likely abnormal cross-bridge (XB) function which leads to impaired force generation, decreased contractile performance, and hypertrophy in vivo. The myosin(More)
In infants, respiratory infection elicits tachypnea. To begin to evaluate the role of brainstem cytokine expression in modulation of breathing pattern changes, we compared the pattern generated after endotracheal instillation of lipopolysaccharide (LPS) in in vivo rat pups to local pro-inflammatory cytokine injection in the nucleus tractus solitarius (nTS)(More)
Cardiac myosin binding protein-C (cMyBP-C) phosphorylation is an important regulator of contractile function, however, its contributions to length-dependent changes in cross-bridge (XB) kinetics is unknown. Therefore, we performed mechanical experiments to quantify contractile function in detergent-skinned ventricular preparations isolated from wild-type(More)
KEY POINTS β-adrenergic stimulation increases cardiac myosin binding protein C (MyBP-C) and troponin I phosphorylation to accelerate pressure development and relaxation in vivo, although their relative contributions remain unknown. Using a novel mouse model lacking protein kinase A-phosphorylatable troponin I (TnI) and MyBP-C, we examined in vivo(More)
Phosphorylation of cardiac myosin binding protein-C (MyBP-C) modulates cardiac contractile function; however, the specific roles of individual serines (Ser) within theM-domain that are targets for b-adrenergic signaling are not known. Recently, we demonstrated that significant accelerations in in vivo pressure development following b-agonist infusion can(More)
Dysfunctions of brainstem regions responsible for central CO2 chemoreception have been proposed as an underlying pathophysiology of Sudden Infant Death Syndrome (SIDS). We recorded respiratory motor output and intracellular pH (pHi) from chemosensitive neurons in an in vitro tadpole brainstem during normocapnia and hypercapnia. Flash photolysis of the H+(More)