Kenneth S. Ball

Learn More
The results of an analysis of turbulent pipe flow based on a Karhunen-Loève decomposition are presented. The turbulent flow is generated by a direct numerical simulation of the Navier-Stokes equations using a spectral element algorithm at a Reynolds number Reτ = 150. This simulation yields a set of basis functions that captures 90% of the energy after 2,453(More)
Using large-scale numerical calculations, we explore the proper orthogonal decomposition of low Reynolds number turbulent pipe flow, using both the translational invariant (Fourier) method and the method of snapshots. Each method has benefits and drawbacks, making the 'best' choice dependent on the purpose of the analysis. Owing to its construction, the(More)
Dense fluid-particulate systems are widely encountered in the pharmaceutical, energy, environmental and chemical processing industries. Prediction of the heat transfer characteristics of these systems is challenging. Use of a high fidelity Discrete Element Method (DEM) for particle scale simulations coupled to Computational Fluid Dynamics (CFD) requires(More)
The objective of this research is to study the behavior of highly viscous gravitydriven jets filling a container. Matters of interest are the formation of voids in the fluid pool during the filling process and the unstable behavior of the fluid in the landing region which manifests itself as an oscillating motion. The working fluids used in this research(More)
ion of the continuous injection sale as a single unit sealed bid first-price auction. Here, we note our others. First, in a natural market, emissions and allowance trading are concurrent. Only at compliance must the inventory of allowances be greater than the quantity emitted since the last compliance deadline; at any other time, a polluter may have already(More)
This thesis explores error-correcting codes which can be used in physical unclonable function (PUF) applications. We investigate linear block codes and concatenated codes, which are traditionally used with PUFs, and compare them to convolutional codes using the criteria of error correction capability, decoder hardware requirements, flexibility of code(More)