Kenneth R. Lyons

Learn More
New human-computer interfaces that use bioelectrical signals as input are allowing study of the flexibility of the human neuromuscular system. We have developed a myoelectric human-computer interface which enables users to navigate a cursor to targets through manipulations of partial powers within a single surface electromyography (sEMG) signal. Users(More)
Electromyography-based gesture classification methods for control of advanced upper limb prostheses are limited either to individuals with amputations distal to the elbow or to those willing to undergo targeted muscle reinnervation surgery. Based on the natural similarity between gestures of the lower leg and the arm and on established methods in(More)
Here we demonstrate the use of a new singlesignal surface electromyography (sEMG) brain-computer interface (BCI) to control a mobile robot in a remote location. Previous work on this BCI has shown that users are able to perform cursor-to-target tasks in two-dimensional space using only a single sEMG signal by continuously modulating the signal power in two(More)
  • 1