Learn More
Pancreatic ductal adenocarcinoma (PDA) is among the most lethal human cancers in part because it is insensitive to many chemotherapeutic drugs. Studying a mouse model of PDA that is refractory to the clinically used drug gemcitabine, we found that the tumors in this model were poorly perfused and poorly vascularized, properties that are shared with human(More)
The p53 tumor suppressor gene is commonly altered in human tumors, predominantly through missense mutations that result in accumulation of mutant p53 protein. These mutations may confer dominant-negative or gain-of-function properties to p53. To ascertain the physiological effects of p53 point mutation, the structural mutant p53R172H and the contact mutant(More)
We report a direct comparison of the differential effects of individual p53 mutations on lung tumor growth and progression, and the creation of a murine model of spontaneous advanced lung adenocarcinoma that closely recapitulates several aspects of advanced human pulmonary adenocarcinoma. We generated compound conditional knock-in mice with mutations in(More)
Pancreatic ductal adenocarcinoma (PDA) is an almost uniformly lethal disease. One explanation for the devastating prognosis is the failure of many chemotherapies, including the current standard of care therapy gemcitabine. Although our knowledge of the molecular events underlying multistep carcinogenesis in PDA has steadily increased, translation into more(More)
The use of genetically engineered cancer-prone mice as relevant surrogates for patients during the development of pertinent clinical applications is an unproven expectation that awaits direct demonstration. Despite the generally disappointing findings using tumor xenografts and certain early transgenic cancer models to predict therapeutic efficacy in(More)
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy that resists current treatments. To test epigenetic therapy against this cancer, we used the DNA demethylating drug 5-aza-2'-deoxycytidine (DAC) in an aggressive mouse model of stromal rich PDAC (KPC-Brca1 mice). In untreated tumors, we found globally decreased 5-methyl-cytosine (5-mC) in(More)
Genetically engineered mouse (GEM) models of cancer have progressively improved in technical sophistication and accurately recapitulating the cognate human condition and have had a measurable impact upon our knowledge of tumorigenesis. However, the application of such models toward the development of innovative therapeutic and diagnostic approaches has(More)
Harmonic motion imaging (HMI) is a radiationforce- based elasticity imaging technique that tracks oscillatory tissue displacements induced by sinusoidal ultrasonic radiation force to assess the resulting oscillatory displacement denoting the underlying tissue stiffness. The objective of this study was to evaluate the feasibility of HMI in pancreatic tumor(More)
  • Filip Bednar, Heather K Schofield, +12 authors Marina Pasca di Magliano
  • 2015
Epigenetic dysregulation is involved in the initiation and progression of many epithelial cancers. BMI1, a component of the polycomb protein family, plays a key role in these processes by controlling the histone ubiquitination and long-term repression of multiple genomic loci. BMI1 has previously been implicated in pancreatic homeostasis and the function of(More)