Learn More
The 1993 U.S. hantavirus pulmonary syndrome (HPS) outbreak was attributed to environmental conditions and increased rodent populations caused by unusual weather in 1991- 92. In a case-control study to test this hypothesis, we estimated precipitation at 28 HPS and 170 control sites during the springs of 1992 and 1993 and compared it with precipitation during(More)
BACKGROUND Because of complex interactions of climate variables at the levels of the pathogen, vector, and host, the potential influence of climate change on vector-borne and zoonotic diseases (VBZDs) is poorly understood and difficult to predict. Climate effects on the nonvector-borne zoonotic diseases are especially obscure and have received scant(More)
Yersinia pestis, the causative agent of plague, has been detected in fleas and mammals throughout the western United States. This highly virulent infection is rare in humans, surveillance of the disease is expensive, and it often was assumed that risk of exposure to Y. pestis is high in most of the western United States. For these reasons, some local health(More)
Neglected Diseases R ecent experience with SARS (severe acute respiratory syndrome) [1] and avian flu shows that the public and political response to threats from new anthropozoonoses can be near-hysteria. This can readily make us forget more classical animal-borne diseases, such as plague (Box 1). Three recent international meetings on plague (Box 2)(More)
The relationships between climatic variables and the frequency of human plague cases (1960-1997) were modeled by Poisson regression for two adjoining regions in northeastern Arizona and northwestern New Mexico. Model outputs closely agreed with the numbers of cases actually observed, suggesting that temporal variations in plague risk can be estimated by(More)
Exposure to cats infected with Yersinia pestis is a recently recognized risk for human plague in the US. Twenty-three cases of cat-associated human plague (5 of which were fatal) occurred in 8 western states from 1977 through 1998, which represent 7.7% of the total 297 cases reported in that period. Bites, scratches, or other contact with infectious(More)
We lack a clear understanding of the enzootic maintenance of the bacterium (Yersinia pestis) that causes plague and the sporadic epizootics that occur in its natural rodent hosts. A key to elucidating these epidemiological dynamics is determining the dominant transmission routes of plague. Plague can be acquired from the bites of infectious fleas (which is(More)
As part of a fatal human plague case investigation, we showed that the plague bacterium, Yersinia pestis, can survive for at least 24 days in contaminated soil under natural conditions. These results have implications for defining plague foci, persistence, transmission, and bioremediation after a natural or intentional exposure to Y. pestis.
Plague is enzootic in wildlife populations of small mammals in central and eastern Asia, Africa, South and North America, and has been recognized recently as a reemerging threat to humans. Its causative agent Yersinia pestis relies on wild rodent hosts and flea vectors for its maintenance in nature. Climate influences all three components (i.e., bacteria,(More)
Plague is a flea-borne zoonotic bacterial disease caused by Yersinia pestis. It has caused three historical pandemics, including the Black Death which killed nearly a third of Europe's population in the 14th century. In modern times, plague epizootics can extirpate entire susceptible wildlife populations and then disappear for long time periods.(More)