Learn More
Pest and pathogen losses jeopardise global food security and ever since the 19(th) century Irish famine, potato late blight has exemplified this threat. The causal oomycete pathogen, Phytophthora infestans, undergoes major population shifts in agricultural systems via the successive emergence and migration of asexual lineages. The phenotypic and genotypic(More)
ABSTRACT Dramatic changes occurred within populations of Phytophthora infestans in the United States and Canada from 1994 through 1996. Occurrence of the US-8 genotype, detected rarely during 1992 and 1993, increased rapidly and predominated in most regions during 1994 through 1996. US-7, which infected both potato and tomato and made up almost 50% of the(More)
Diphenyleneiodonium (DPI) has been used frequently as a specific inhibitor of NADH oxidase activity in studies of plant/pathogen interactions. The present study reports the effect of DPI on the pseudo-oxidative activity of horseradish peroxidase. DPI, like other phenolics, is able to catalytically stimulate NADH oxidation in the presence of exogenous H2O2.(More)
In this study, acetosyringone was identified as one of the major extracellular phenolics in tobacco suspension cells and was shown to have bioactive properties that influence early events in plant-bacterial pathogenesis. In our model system, tobacco cell suspensions treated with bacterial isolate Pseudomonas syringae WT (HR+) undergo a resistant interaction(More)
A total of 18 paralogs of xyloglucan-specific endoglucanases (EGLs) from the glycosyl hydrolase family 12 were identified and characterized in Phytophthora sojae and Phytophthora ramorum. These genes encode predicted extracellular enzymes, with sizes ranging from 189 to 435 amino acid residues, that would be capable of hydrolyzing the xyloglucan component(More)
Twenty-one homologs of family 5 endo-(1-4)-beta-glucanase genes (EGLs) were identified and characterized in the oomycete plant pathogens Phytophthora infestans, P. sojae, and P. ramorum, providing the first comprehensive analysis of this family in Phytophthora. Phylogenetic analysis revealed that these genes constitute a unique eukaryotic group, with(More)
Solanum chacoense is a wild potato species resistant to the Colorado potato beetle,Leptinotarsa decemlineata. Most genotypes ofS. chacoense synthesize the glycoalkaloids solanine (sol) and chaconine (chac) and are hosts of the beetle. A few rare genotypes have a gene(s) for acetylation of carbon-23 of the steroid aglycone of sol and chac. Laboratory(More)
Leptine I, a glycoalkaloid only known to occur in the foliage of the wild potato species Solanum chacoense (Bitt.), is a potent feeding deterrent to the economically serious insect pest, the Colorado potato beetle (Leptinotarsa decemlineata Say). In order to demonstrate, systematically, the effectiveness of leptine I, incorporation into synthetic beetle(More)
Neurons from chemosensory hairs on the galeae of adult Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say), were investigated for responses to glycoalkaloids of the family Solanaceae. While solanine and tomatine elicited irregular firing by multiple neurons and bursting activity at 1 mM concentration in most sensory hairs, stimulation with leptine(More)
In recent years, late blight, caused by Phytophthora infestans (Mont) De Bary, has increased in severity in many parts of the world, and this has been associated with migrations which have introduced new, arguably more aggressive, populations of the pathogen. In Taiwan, late blight has been endemic on outdoor tomato crops grown in the highlands since the(More)