Learn More
A key component in describing forest carbon (C) dynamics is the change in downed dead wood biomass through time. Specifically, there is a dearth of information regarding the residence time of downed woody debris (DWD), which may be reflected in the diversity of wood (for example, species, size, and stage of decay) and site attributes (for example, climate)(More)
A greenhouse gas and carbon accounting profile was developed for the U.S. forest products industry value chain for 1990 and 2004-2005 by examining net atmospheric fluxes of CO(2) and other greenhouse gases (GHGs) using a variety of methods and data sources. Major GHG emission sources include direct and indirect (from purchased electricity generation)(More)
BACKGROUND Global forests capture and store significant amounts of CO2 through photosynthesis. When carbon is removed from forests through harvest, a portion of the harvested carbon is stored in wood products, often for many decades. The United States Forest Service (USFS) and other agencies are interested in accurately accounting for carbon flux associated(More)
  • Peter J Ince, Andrew D Kramp, Kenneth E Skog, Do-Il Yoo, V Alaric Sample
  • 2011
JEL classification: L73 Q23 Keywords: Forest products Market modeling Wood energy scenarios a b s t r a c t This paper describes an approach to modeling U.S. forest sector market and trade impacts of expansion in domestic wood energy consumption under hypothetical future U.S. wood biomass energy policy scenarios. The U.S. Forest Products Module (USFPM) was(More)
  • Paul V Ellefson, Michael A Kilgore, Kenneth E Skog, Christopher D Risbrudt
  • 2011
Transfer of technologies produced by research is critical to innovation within all organizations. The intent of this paper is to take stock of the conceptual underpinnings of technology transfer processes as they relate to wood utilization research and to identify conditions that promote the successful transfer of research results. Conceptually, research(More)