Learn More
As high performance computing approaches exascale, CPU capability far outpaces disk write speed, and in situ visualization becomes an essential part of an analyst's workflow. In this paper, we describe the ParaView Coprocessing Library, a framework for in situ visualization and analysis coprocessing. We describe how coprocessing algorithms (building on many(More)
Coronary flow is different from the flow in other parts of the arterial system because it is influenced by the contraction and relaxation of the heart. To model coronary flow realistically, the compressive force of the heart acting on the coronary vessels needs to be included. In this study, we developed a method that predicts coronary flow and pressure of(More)
We present an anisotropic adaptive discretization method and demonstrate how computational efficiency can be increased when applying it to the simulation of cardiovascular flow. We further propose a new adaptive approach which controls the mesh adaptation procedure to maintain structured and graded elements near the wall resulting in a more accurate wall(More)
Flow and pressure waves emanate from the heart and travel through the major arteries where they are damped, dispersed and reflected due to changes in vessel caliber, tissue properties and branch points. As a consequence, solutions to the governing equations of blood flow in the large arteries are highly dependent on the outflow boundary conditions imposed(More)
A generalized-α method is developed and analyzed for linear, first-order systems. The method is then extended to the filtered Navier-Stokes equations within the context of a stabilized finite element method. The formulation is studied through the application to laminar flow past a circular cylinder and turbulent flow past a long, transverse groove. The(More)
In this study, we present an adaptive anisotropic finite element method (FEM) and demonstrate how computational efficiency can be increased when applying the method to the simulation of blood flow in the cardiovascular system. We use the SUPG formulation for the transient 3D incompressible Navier-Stokes equations which are discretised by linear finite(More)
Implicit methods for partial differential equations using unstructured meshes allow for an efficient solution strategy for many real-world problems (e.g., simulation-based virtual surgical planning). Scalable solvers employing these methods not only enable solution of extremely-large practical problems but also lead to dramatic compression in(More)
A procedure for anisotropic mesh adaptation accounting for mixed element types and boundary layer meshes is presented. The method allows to automatically construct meshes on domains of interest to accurately and efficiently compute key flow quantities, especially near wall quantities like wall shear stress. The new adaptive approach uses local mesh(More)
We present an automatic adaptive procedure to perform blood flow simulations in the cardiovascular system. The procedure allows the user to start with subject-specific data collected through clinical measurements, like magnetic resonance imaging (MRI) data, and evaluate physiological parameters of interest, like flow distribution, pressure variations, wall(More)