Kenneth C. McCullough

Learn More
Infection of pigs with classical swine fever virus (CSFV), a member of the Flaviviridae family, causes a severe leukopenia, particularly notable with the lymphocytes. The goal of this study was to analyze mechanisms behind this CSFV-induced lymphopenia. To this end, the kinetics of leukocyte depletion, the appearance of apoptotic cells, and virus infection(More)
Seven neutralizing monoclonal antibodies were used to characterize 30 escape mutants of a type O foot-and-mouth disease (FMD) virus (O1 Kaufbeuren) selected with the five most active antibodies. Three non-overlapping antigenic sites were found by ELISA and cross-neutralization studies. Within two of the sites the epitopes of two or more monoclonal(More)
Classical swine fever (CSF) is a highly contagious and often fatal disease of pigs characterised by fever, severe leukopenia and haemorrhages. With vaccines having an importance in disease control, studies are seeking improved protein-based subunit vaccine against the virus (CSFV). In this respect, recombinant viral NS3 protein was analysed for its(More)
Dendritic cells (DC) are major players in both innate and adaptive immune responses against influenza virus. These immune responses, as well as the important interface between the innate and adaptive systems, are orchestrated by specialized subsets of DC, including conventional steady-state DC, migratory DC and plasmacytoid DC. The characteristics and(More)
BACKGROUND Porcine circovirus type 2 (PCV2) is a dominant causative agent of postweaning multisystemic wasting syndrome (PMWS), a multifactorial disease complex with putative immunosuppressive characteristics. Little is known about adaptive PCV2-specific immune responses in infected pigs. Therefore, the T and B cell responses following PCV2 infection in(More)
T-cell epitopes within viral polypeptide VP4 of the capsid protein of foot-and-mouth disease virus were analyzed using 15-mer peptides and peripheral blood mononuclear cells (PBMC) from vaccinated outbred pigs. An immunodominant region between VP4 residues 16 and 35 was identified, with peptide residues 20 to 34 (VP4-0) and 21 to 35 (VP4-5) particularly(More)
Dendritic cells (DC), which are essential for inducing and regulating immune defenses and responses, represent the critical target for vaccines against pathogens such as foot-and-mouth disease virus (FMDV). Although it is clear that FMDV enters epithelial cells via integrins, little is known about FMDV interaction with DC. Accordingly, DC internalization of(More)
H5N1 influenza A virus (IAV) infections in human remain rare events but have been associated with severe disease and a higher mortality rate compared to infections with seasonal strains. An excessive release of pro-inflammatory cytokine together with a greater virus dissemination potential have been proposed to explain the high virulence observed in human(More)
DC employ several endocytic routes for processing antigens, driving forward adaptive immunity. Recent advances in synthetic biology have created small (20-30 nm) virus-like particles based on lipopeptides containing a virus-derived coiled coil sequence coupled to synthetic B- and T-cell epitope mimetics. These self-assembling SVLP efficiently induce(More)
A major component of innate immune responses relies on monocytes and macrophages, virus infection of which will pose a particular problem for immunological defense. Consequently, the monocytic cell differentiation pathway was analyzed in terms of cellular modulations therein and their relation to monocytotropic virus infection. Differentiation was(More)