Learn More
In this paper we describe data exploration techniques designed to classify DNA sequences. Several visualization and data mining techniques were used to validate and attempt to discover new methods for distinguishing coding DNA sequences, or exons, from non-coding DNA sequences, or introns. The goal of the data mining was to see whether some other possibly(More)
MOTIVATION MELTSIM is a windows-based statistical mechanical program for simulating melting curves of DNAs of known sequence and genomic dimensions under different conditions of ionic strength with great accuracy. The program is useful for mapping variations of base compositions of sequences, conducting studies of denaturation, establishing appropriate(More)
The quartz crystal microbalance (QCM) is a simple, cost effective, high-resolution mass sensing technique, based upon the piezoelectric effect. As a methodology, the QCM evolved a solution measurement capability in largely analytical chemistry and electrochemistry applications due to its sensitive solution-surface interface measurement capability. The(More)
Radviz is a radial visualization with dimensions assigned to points called dimensional anchors (DAs) placed on the circumference of a circle. Records are assigned locations within the circle as a function of its relative attraction to each of the DAs. The DAs can be moved either interactively or algorithmically to reveal different meaningful patterns in the(More)
BACKGROUND DNA homopolymer tracts, poly(dA).poly(dT) and poly(dG).poly(dC), are the simplest of simple sequence repeats. Homopolymer tracts have been systematically examined in the coding, intron and flanking regions of a limited number of eukaryotes. As the number of DNA sequences publicly available increases, the representation (over and under) of(More)
BACKGROUND Simple sequence repeats (SSRs), microsatellites or polymeric sequences are common in DNA and are important biologically. From mononucleotide to trinucleotide repeats and beyond, they can be found in long (> 6 repeating units) tracts and may be characterized by quantifying the frequencies in which they are found and their tract lengths. However,(More)
Microtubules, the primary components of the chromosome segregation machinery, are stabilized by longitudinal and lateral noncovalent bonds between the tubulin subunits. However, the thermodynamics of these bonds and the microtubule physicochemical properties are poorly understood. Here, we explore the biomechanics of microtubule polymers using multi-scale(More)
Physical properties of capsids of plant and animal viruses are important factors in capsid self-assembly, survival of viruses in the extracellular environment, and their cell infectivity. Combined AFM experiments and computational modeling on subsecond timescales of the indentation nanomechanics of Cowpea Chlorotic Mottle Virus capsid show that the capsid's(More)