Kenneth A. Dawson

Learn More
Nanosilver, due to its small particle size and enormous specific surface area, facilitates more rapid dissolution of ions than the equivalent bulk material; potentially leading to increased toxicity of nanosilver. This, coupled with their capacity to adsorb biomolecules and interact with biological receptors can mean that nanoparticles can reach(More)
BACKGROUND Nanomaterials such as SiO2 nanoparticles (SiO2NP) are finding increasing applications in the biomedical and biotechnological fields such as disease diagnostics, imaging, drug delivery, food, cosmetics and biosensors development. Thus, a mechanistic and systematic evaluation of the potential biological and toxic effects of SiO2NP becomes crucial(More)
Nanotechnology is expected to play a vital role in the rapidly developing field of nanomedicine, creating innovative solutions and therapies for currently untreatable diseases, and providing new tools for various biomedical applications, such as drug delivery and gene therapy. In order to optimize the efficacy of nanoparticle (NP) delivery to cells, it is(More)
For some time, there has existed the idea that dense colloidal systems with repulsive interactions can be interpreted using certain approaches to glass theory. Recent advances in understanding the role of short-ranged attractive interactions in driving another type of 'glass-transition' have considerably extended the range of potential applications for such(More)
The fibrillation kinetics of the amyloid β peptide is analyzed in presence of cationic polystyrene nanoparticles of different size. The results highlight the importance of the ratio between the peptide and particle concentration. Depending on the specific ratio, the kinetic effects vary from acceleration of the fibrillation process by reducing the lag phase(More)
The fast-paced development of nanotechnology needs the support of effective safety testing. We have developed a screening platform measuring simultaneously several cellular parameters for exposure to various concentrations of nanoparticles (NPs). Cell lines representative of different organ cell types, including lung, endothelium, liver, kidney,(More)
The transition from a liquid to a glass in colloidal suspensions of particles interacting through a hard core plus an attractive square-well potential is studied within the mode-coupling-theory framework. When the width of the attractive potential is much shorter than the hard-core diameter, a reentrant behavior of the liquid-glass line and a(More)
Cells act as extremely efficient filters for elution of unbound fluorescent tags or impurities associated with nanoparticles, including those that cannot be removed by extensive cleaning. This has consequences for quantification of nanoparticle uptake and sub-cellular localization in vitro and in vivo as a result of the presence of significant amount of(More)
Jamming, or dynamical arrest, is a transition at which many particles stop moving in a collective manner. In nature it is brought about by, for example, increasing the packing density, changing the interactions between particles, or otherwise restricting the local motion of the elements of the system. The onset of collectivity occurs because, when one(More)
Superparamagnetic iron oxide nanoparticles (SPIONs) are recognized as promising nanodiagnostic materials due to their biocompatibility, unique magnetic properties, and their application as multimodal contrast agents. As coated SPIONs have potential use in the diagnosis and treatment of various brain diseases such as Alzheimer's, a comprehensive(More)