Learn More
Green leaf volatiles (GLVs) are C(6) aldehydes, alcohols, and their esters formed through the hydroperoxide lyase pathway of oxylipin metabolism. Plants start to form GLVs after disruption of their tissues and after suffering biotic or abiotic stresses. GLV formation is thought to be regulated at the step of lipid-hydrolysis, which provides free fatty acids(More)
To elucidate the fundamental mechanisms and subsequent evolutionary aspects of plant cold acclimation, we examined the effect of cold acclimation on freezing tolerance in Klebsormidium flaccidum, a green alga belonging to Charophyceae, a sister group of land plants. Freezing tolerance of K. flaccidum was significantly enhanced by cold treatment: survival(More)
Plants receive volatile compounds emitted by neighboring plants that are infested by herbivores, and consequently the receiver plants begin to defend against forthcoming herbivory. However, to date, how plants receive volatiles and, consequently, how they fortify their defenses, is largely unknown. In this study, we found that undamaged tomato plants(More)
The mouse nuclear receptor CAR (constitutively active receptor) is a transcription factor that is activated by phenobarbital-type inducers such as TCPOBOP {1,4 bis[2-(3,5-dichloropyridyloxy)]benzene} in liver in vivo. However, CAR is constitutively active in cell-based transfection assays, the molecular mechanism for which has not been elucidated yet. In(More)
Almost all terrestrial plants produce green leaf volatiles (GLVs), consisting of six-carbon (C6) aldehydes, alcohols and their esters, after mechanical wounding. C6 aldehydes deter enemies, but C6 alcohols and esters are rather inert. In this study, we address why the ability to produce various GLVs in wounded plant tissues has been conserved in the plant(More)
In response to herbivory, plants emit specific blends of herbivore-induced plant volatiles (HIPVs). HIPVs mediate sizable arrays of interactions between plants and arthropods, microorganisms, undamaged neighboring plants or undamaged sites within the plant in various ecosystems. HIPV profiles vary according to the plant and herbivore species, and the(More)
Green leaf volatiles (GLVs) are commonly emitted by green plants, and their production is drastically enhanced when they are under biotic stress. To clarify the ecological function of naturally emitted GLVs, we studied the response of Arabidopsis, whose GLV biosynthesis had been modified, when subjected to herbivory or a pathogenic infection. There was a(More)
We observed that the level of reverse triiodothyronine (rT3) was significantly increased after partial hepatectomy (PH) in both wild-type and constitutively active/androstane receptor (CAR) knockout (KO) mice, and treatment with phenobarbital (PB), a CAR activator, after PH decreased rT3 to restore its original level only in wild-type mice. On the other(More)
Green leaf volatiles (GLVs) are C6-molecules - alcohols, aldehydes, and esters - produced by plants upon herbivory or during pathogen infection. Exposure to this blend of volatiles induces defense-related responses in neighboring undamaged plants, thus assigning a role to GLVs in regulating plant defenses. Here we compared Arabidopsis thaliana ecotype(More)
P1-zeta-crystallin (P1-ZCr) is an oxidative stress-induced NADPH:quinone oxidoreductase in Arabidopsis thaliana, but its physiological electron acceptors have not been identified. We found that recombinant P1-ZCr catalyzed the reduction of 2-alkenals of carbon chain C(3)-C(9) with NADPH. Among these 2-alkenals, the highest specificity was observed for(More)