Kenji K Kojima

Learn More
Repbase Update (RU) is a database of representative repeat sequences in eukaryotic genomes. Since its first development as a database of human repetitive sequences in 1992, RU has been serving as a well-curated reference database fundamental for almost all eukaryotic genome sequence analyses. Here, we introduce recent updates of RU, focusing on technical(More)
Although most LINEs (long interspersed nuclear elements), which are autonomous non-long-terminal-repeat retrotransposons, are inserted throughout the host genome, three groups of LINEs, the early-branched group, the Tx group, and the R1 clade, are inserted into specific sites within the target sequence. We previously characterized the sequence specificity(More)
BACKGROUND The wheat stripe rust fungus (Puccinia striiformis f. sp. tritici, PST) is responsible for significant yield losses in wheat production worldwide. In spite of its economic importance, the PST genomic sequence is not currently available. Fortunately Next Generation Sequencing (NGS) has radically improved sequencing speed and efficiency with a(More)
Ribosomal RNA genes are abundant repetitive sequences in most eukaryotes. Ribosomal DNA (rDNA) contains many insertions derived from mobile elements including non-long terminal repeat (non-LTR) retrotransposons. R2 is the well-characterized 28S rDNA-specific non-LTR retrotransposon family that is distributed over at least 4 bilaterian phyla. R2 is a large(More)
R2 is a non-long-terminal-repeat (LTR) retrotransposon that inserts specifically into 28S rDNA. R2 has been identified in many species of arthropods and three species of chordates. R2 may be even more widely distributed in animals, and its origin may be traceable to early animal evolution. In this study, we identified R2 elements in medaka fish, White Cloud(More)
Chromosomal ends of most eukaryotes are composed of simple telomeric repeats. Arthropod telomeres are generally constituted by TTAGG pentanucleotide repeats; however, some insect species including Drosophila melanogaster do not have telomeric repeats. In contrast, the domestic silkworm Bombyx mori contains TTAGG-type telomeric repeats, but the telomerase(More)
Although most non-long terminal repeat (non-LTR) retrotransposons are inserted throughout the host genome, many non-LTR elements in the R1 clade are inserted into specific sites within the target sequence. Four R1 clade families have distinct target specificity: R1 and RT insert into specific sites of 28S rDNA, and TRAS and SART insert into different sites(More)
To provide context for the diversification of archosaurs--the group that includes crocodilians, dinosaurs, and birds--we generated draft genomes of three crocodilians: Alligator mississippiensis (the American alligator), Crocodylus porosus (the saltwater crocodile), and Gavialis gangeticus (the Indian gharial). We observed an exceptionally slow rate of(More)
Eukaryotic genomes harbor diverse families of repetitive DNA derived from transposable elements (TEs) that are able to replicate and insert into genomic DNA. The biological role of TEs remains unclear, although they have profound mutagenic impact on eukaryotic genomes and the origin of repetitive families often correlates with speciation events. We present(More)
Most insects have telomeres that consist of pentanucleotide (TTAGG) telomeric repeats, which are synthesized by telomerase. However, all species in Diptera so far examined and several species in other orders of insect have lost the (TTAGG)n repeats, suggesting that some of them recruit telomerase-independent telomere maintenance. The silkworm, Bombyx mori,(More)