Learn More
Autonomous non-long terminal repeat retrotransposons (NLRs) are ubiquitous mobile genetic elements that insert their DNA copies at new locations by retrotransposition. In vertebrates, there are 4 NLR clades, L1, L2, CR1, and RTE, which diverged in the Precambrian era. It has been demonstrated that retrotransposition of L1 and L2 members proceeds via(More)
Genomic imprinting causes parental origin-specific monoallelic gene expression through differential DNA methylation established in the parental germ line. However, the mechanisms underlying how specific sequences are selectively methylated are not fully understood. We have found that the components of the PIWI-interacting RNA (piRNA) pathway are required(More)
Catalytic group II introns are mobile retroelements that invade cognate intronless genes via retrohoming, where the introns reverse splice into double-stranded DNA (dsDNA) targets. They can also retrotranspose to ectopic sites at low frequencies. Whereas our previous studies with a bacterial intron, Ll.LtrB, supported frequent use of RNA targets during(More)
Long interspersed elements (LINEs) are transposable elements that proliferate within eukaryotic genomes, having a large impact on eukaryotic genome evolution. LINEs mobilize via a process called retrotransposition. Although the role of the LINE-encoded protein(s) in retrotransposition has been extensively investigated, the participation of host-encoded(More)
BACKGROUND Although there is lymphatic flow into the popliteal fossa from a skin tumor located in the lower leg, popliteal metastasis is extremely rare. Recently, sentinel lymph nodes outside traditional nodal basins have been identified. This study investigated the incidence of sentinel nodes in the popliteal region and the indication for biopsy. METHODS(More)
PI- Pfu I and PI- Pfu II from Pyrococcus furiosus are homing endonucleases, as shown in the accompanying paper. These two endonucleases are produced by protein splicing from the precursor protein including ribonucleotide reductase (RNR). We show here that both enzymes specifically interact with their substrate DNA and distort the DNA strands by 73 degrees(More)
L1 is the most proliferative autonomous retroelement that comprises about 20% of mammalian genomes. Why L1s have proliferated so extensively in mammalian genomes is an important yet unsolved question. L1 copies are amplified via retrotransposition, in which the DNA cleavage specificity by the L1-encoded endonuclease (EN) primarily dictates sites of(More)
OBJECTIVE The present study was performed to investigate the feasibility of fusion of images obtained by SPECT and multidetector CT (MDCT) for the accurate localization of sentinel lymph nodes in prostate cancer patients. METHODS To facilitate the fusion of both SPECT and CT images, a pelvic MDCT scan was performed with 3 markers of small plastic bullets(More)
We previously showed that the group II Lactococcus lactis Ll.LtrB intron could retrotranspose into ectopic locations on the genome of its native host. Two integration events, which had been mapped to unique sequences, were localized in the present study to separate copies of the six L.lactis 23S rRNA genes, within operon B or D. Although further movement(More)
Autonomous non-long-terminal-repeat retrotransposons (NLRs) proliferate by retrotransposition via coordinated reactions of target DNA cleavage and reverse transcription by a mechanism called target-primed reverse transcription (TPRT). Whereas this mechanism guarantees the covalent attachment of the NLR and its target site at the 3' junction, mechanisms for(More)