Kenji Honda

Learn More
The neurohypophyseal peptide [Arg(8)]-vasopressin (AVP) exerts major physiological actions through three distinct receptor isoforms designated V1a, V1b, and V2. Among these three subtypes, the vasopressin V1b receptor is specifically expressed in pituitary corticotrophs and mediates the stimulatory effect of vasopressin on ACTH release. To investigate the(More)
We examined endothelium-derived hyperpolarizing factor (EDHF)-mediated relaxation of mesenteric arteries in high-sodium loaded streptozotocin (STZ)-induced diabetic rats. The study shows that acetylcholine (ACh)-induced, EDHF-mediated relaxation is relatively maintained in STZ-induced diabetic rats, but after a high-sodium diet was given, the function was(More)
We examined the role of the spinal muscarinic receptor subtype in the anti-nociceptive effect of intrathecal (i.t.) alpha2 adrenoceptor agonist clonidine in mice. I.t. injection of the muscarinic receptor antagonist atropine completely inhibited i.t. clonidine-induced increase in the mechanical threshold, but did not affect the increase in tail-flick(More)
The P2X receptor is a receptor-gated cationic channel that responds to ATP. The quantification of P2X mRNA expression in dorsal root ganglion (DRG) provides important information for neuropathic pain studies. We developed a rapid and sensitive external-standard-based real-time quantitative PCR assay for the quantification of mRNA of P2X receptors in mouse(More)
In this paper, we directly demonstrate, for the first time, the activation of Ca(2+)-dependent protein kinase C (PKC) in the spinal cord of diabetic mice. In streptozotocin (STZ)-treated (200 mg/kg, i.v.) diabetic mice, hypersensitivity (allodynia) to mechanical stimulation appeared 7 d after STZ injection. This mechanical allodynia was inhibited by(More)
Subcutaneous injection of formalin into a paw of mice caused two distinct phases of licking and biting, first phase (1-5 min) and the second phase (7-30 min) after the injection. The muscarinic antagonist atropine (0.1-10 ng, i.t.) and the M(3) receptor antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) (0.1-20 ng, i.t.) inhibited the(More)
In this study, we examined the effects of an intracerebroventricular (i.c.v.) administration of prostaglandin E2 (PGE2) and of selective agonists for PGE2 receptor subtypes, EP1, EP2, EP3 and EP4, on central cardiovascular regulation and renal sympathetic nerve activity (RSNA) in urethane-anesthetized rats. The central administration of PGE2 (0.01-1.0 nmol)(More)
Painful diabetic neuropathy causes hyperalgesia and does not respond to commonly used analgesics such as non-steroidal anti-inflammatory drugs or opioids at doses below those producing disruptive side effects. In the present study, we examined the effect of P2X receptor antagonists, which are known to modulate the pain pathway, on mechanical hyperalgesia in(More)
Arginine vasopressin (AVP) receptors have been classified into V1a, V1b, and V2 subtypes. Recent studies have demonstrated the involvement of AVP in anti-nociception and in morphine-induced anti-nociception. However, the roles of individual AVP-receptor subtypes have not been fully elucidated. Here, we have summarized the role of V1-receptor subtypes in(More)
ATP is released into extracellular space as an autocrine/paracrine molecule by mechanical stress and pharmacological-receptor activation. Released ATP is partly metabolized by ectoenzymes to adenosine. In the present study, we found that adenosine causes ATP release in Madin-Darby canine kidney cells. This release was completely inhibited by CPT (an A1(More)