Kenichi Ohashi

Learn More
The actin cytoskeleton undergoes extensive remodeling during cell morphogenesis and motility. The small guanosine triphosphatase Rho regulates such remodeling, but the underlying mechanisms of this regulation remain unclear. Cofilin exhibits actin-depolymerizing activity that is inhibited as a result of its phosphorylation by LIM-kinase. Cofilin was(More)
Rac is a small GTPase of the Rho family that mediates stimulus-induced actin cytoskeletal reorganization to generate lamellipodia. Little is known about the signalling pathways that link Rac activation to changes in actin filament dynamics. Cofilin is known to be a potent regulator of actin filament dynamics, and its ability to bind and depolymerize actin(More)
To elucidate the physiological role of sterol regulatory element-binding protein-1 (SREBP-1), the hepatic mRNA levels of genes encoding various lipogenic enzymes were estimated in SREBP-1 gene knockout mice after a fasting-refeeding treatment, which is an established dietary manipulation for the induction of lipogenic enzymes. In the fasted state, the mRNA(More)
LIM-kinase 1 (LIMK1) phosphorylates cofilin, an actin-depolymerizing factor, and regulates actin cytoskeletal reorganization. LIMK1 is activated by the small GTPase Rho and its downstream protein kinase ROCK. We now report the site of phosphorylation of LIMK1 by ROCK. In vitro kinase reaction revealed that the active forms of ROCK phosphorylated LIMK1 on(More)
Semaphorin 3A is a chemorepulsive axonal guidance molecule that depolymerizes the actin cytoskeleton and collapses growth cones of dorsal root ganglia neurons. Here we investigate the role of LIM-kinase 1, which phosphorylates an actin-depolymerizing protein, cofilin, in semaphorin 3A-induced growth cone collapse. Semaphorin 3A induced phosphorylation and(More)
In an attempt to identify transcription factors which activate sterol-regulatory element-binding protein 1c (SREBP-1c) transcription, we screened an expression cDNA library from adipose tissue of SREBP-1 knockout mice using a reporter gene containing the 2.6-kb mouse SREBP-1 gene promoter. We cloned and identified the oxysterol receptors liver X receptor(More)
BACKGROUND Omeprazole is mainly metabolized in the liver by CYP2C19, a genetically determined enzyme, whereas rabeprazole is mainly reduced non-enzymatically and partially metabolized by CYP2C19. The therapeutic effects of rabeprazole are therefore assumed to be less affected by an individual's CYP2C19 status. AIM To investigate the acid inhibitory(More)
BACKGROUND AND PURPOSE A triple therapy with omeprazole, amoxicillin (INN, amoxicilline), and clarithromycin is widely used for the eradication of Helicobacter pylori. Omeprazole and clarithromycin are metabolized by CYP2C19 and CYP3A4. This study aimed to elucidate whether clarithromycin affects the metabolism of omeprazole. METHODS After administration(More)
Worker honeybees change their behaviour from the role of nurse to that of forager with age. We have isolated cDNA clones for two honeybee (Apis mellifera L.) genes, encoding alpha-amylase and glucose oxidase homologues, that are expressed in the hypopharyngeal gland of forager bees. The predicted amino acid sequence of the putative Apis amylase showed 60.5%(More)
Major proteins synthesized in the hypopharyngeal gland of the worker honeybee change from bee-milk proteins to alpha-glucosidase in accordance with the age-dependent role change of the worker bee. Previously, we showed that the gene for alpha-glucosidase is expressed specifically in the forager-bee gland [Ohashi, K., Sawata, M., Takeuchi, H., Natori, S. &(More)