Kenichi Kohno

Learn More
In the periphery of ischemic brain lesions, transient spreading depression-like direct current (DC) deflections occur that may be of pathophysiological importance for determining the volume of the ischemic infarct. The effect of these deflections on cerebral blood flow, tissue oxygen tension, and electrophysiology was studied in rats submitted to(More)
The regional evolution of brain infarction was studied in Wistar rats submitted to remotely controlled thread occlusion of the middle cerebral artery. Occlusion was performed in the magnet of an NMR tomography system to allow continuous recording of diffusion-weighted images. After 30 min (n = 6) or 2 h (n = 9), cerebral blood flow was measured by [14C](More)
Middle cerebral artery occlusion was performed in rats while the animals were inside the nuclear magnetic resonance (NMR) tomograph. Successful occlusion was confirmed by the collapse of amplitude on an electrocorticogram. The ultrafast NMR imaging technique UFLARE was used to measure the apparent diffusion coefficient (ADC) immediately after the induction(More)
The effect of focal ischemia on tissue pH was studied at various times up to 6 hours after permanent middle cerebral artery occlusion in rats. Tissue pH was imaged by using umbelliferone fluorescence and correlated with cerebral blood flow, ATP content, and recordings of the steady potential. Circumscribed foci of allalosis (pH 7.32+/-0.11) were detected(More)
The quantitative NMR parameters T1, T2, rho, and apparent diffusion coefficient (ADC) were determined during the 7 h after middle cerebral artery occlusion in rats. In the normal caudate-putamen (CP), 869 +/- 145 ms and 72 +/- 2 ms for T1 and for T2, respectively, were found; the corresponding values for cortex were 928 +/- 117 ms and 73 +/- 2 ms. The ADC(More)
BACKGROUND AND PURPOSE Diffusion-weighted nuclear magnetic resonance imaging has been shown to detect early ischemia-related alterations in experimental stroke. This raises the question of whether the observed increase in signal intensity is correlated with changes in cerebral metabolism. After middle cerebral artery occlusion, nuclear magnetic resonance(More)
The effect of the glutamate (AMPA subtype) receptor antagonist NBQX on periinfarct direct current (DC) shifts and cortical ATP depletion volume was examined in rats subjected to 3 h of occlusion of the middle cerebral artery (MCA). MCA occlusion produced an immediate DC shift in the periphery of the ischemic territory. Vehicle-treated (untreated) animals(More)
Previous magnetic resonance (MR) investigations of middle cerebral artery (MCA) occlusion in rats were limited by the lack of early post-occlusion MR measurements and/or electrophysiological monitoring. Therefore, we have developed a technique which allows to perform MCA occlusion inside the magnet under simultaneous recording of EEG and direct current (DC)(More)
A nuclear magnetic resonance study of the middle cerebral artery occlusion in the rat is presented. Experiments were performed on seven animals before and after occlusion, which occurred in situ. The emphasis in this study was on evaluating rapid proton spectroscopic imaging. Data were acquired with experimental durations of between 4 and 15 minutes for a(More)
Changes in intracellular calcium levels in canine basilar arterial smooth muscle were semiquantitatively measured by an electron microscopic cytochemical technique using a combined oxalate-pyroantimonate method. Measurements made after subarachnoid hemorrhage were compared with those made after contraction induced by prostaglandin F2α. Fifteen minutes after(More)