Learn More
PLACE (http://www.dna.affrc.go.jp/htdocs/PLACE/) is a database of nucleotide sequence motifs found in plant cis-acting regulatory DNA elements. Motifs were extracted from previously published reports on genes in vascular plants. In addition to the motifs originally reported, their variations in other genes or in other plant species in later reports are also(More)
An extensive effort of the International Rice Genome Sequencing Project (IRGSP) has resulted in rapid accumulation of genome sequence, and >137 Mb has already been made available to the public domain as of August 2001. This requires a high-throughput annotation scheme to extract biologically useful and timely information from the sequence data on a regular(More)
PLACE (http://www.dna.affrc.go.jp/htdocs/PLACE/) is a database of motifs found in plant cis -acting regulatory DNA elements, all from previously published reports. It covers vascular plants only. In addition to the motifs originally reported, their variations in other genes or in other plant species reported later are also compiled. The PLACE database also(More)
The Rice Proteome Database is the first detailed database to describe the proteome of rice. The current release contains 21 reference maps based on two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) of proteins from rice tissues and subcellular compartments. These reference maps comprise 11 941 identified proteins showing tissue and subcellular(More)
MOTIVATION Transcription start site selection and alternative splicing greatly contribute to diversifying gene expression. Recent studies have revealed the existence of alternative first exons, but most have involved mammalian genes, and as yet the regulation of usage of alternative first exons has not been clarified, especially in plants. RESULTS We(More)
A contig-oriented database for annotation of the rice genome has been constructed to facilitate map-based rice genomics. The Rice Annotation Database has the following functional features: (i) extensive effort of manual annotations of P1-derived artificial chromosome/bacterial artificial chromosome clones can be merged at chromosome and contig-level; (ii)(More)
  • 1