Learn More
This paper presents a memetic algorithm, a highly effective evolutionary algorithm incorporating local search for solving the unconstrained binary quadratic programming problem (BQP). To justify the approach, a fitness landscape analysis is conducted experimentally for several instances of the BQP. The results of the analysis show that recombination-based(More)
We propose a variable depth search based algorithm, called k-opt local search (KLS), for the maximum clique problem. KLS efficiently explores the k-opt neighborhood defined as the set of neighbors that can be obtained by a sequence of several add and drop moves that are adaptively changed in the feasible search space. Computational results on DIMACS(More)
This paper proposes a new iterared local search (ILS) algorit.hm ihar escapes from local optima usin,-a geuet ic crossover. In usual IL9 for solving the rraveling salesman problem, a double-bridge 4-change move is geuerally employed as a useful technique to escape from t.he local opt ima fouud by a local search procedure. Proposed ILS uses a technique of(More)
This paper presents a novel model of reinforcement learning agents. A feature of our learning agent model is to integrate analytic hierarchy process (AHP) into a standard reinforcement learning agent model, which consists of three modules: state recognition, learning, and action selecting modules. In our model, AHP module is designed with <i>primary(More)
This paper presents a simple iterated local search meta-heuristic incorporating a k-opt local search (KLS), called Iterated KLS (IKLS for short), for solving the maximum clique problem (MCP). IKLS consists of three components: LocalSearch at which KLS is used, a Kick called LEC-Kick that escapes from local optima, and Restart that occasionally diversifies(More)
This paper presents a local search algorithm based on variable depth search, called the <i>k-opt local search</i>, for the maximum clique problem. The <i>k-opt</i> local search performs add and drop moves, each of which can be interpreted as 1-opt move, to search a <i>k-opt</i> neighborhood solution at each iteration until no better <i>k</i>-opt(More)