Kengo Adachi

Learn More
F(1)-ATPase is a rotary molecular motor that proceeds in 120 degrees steps, each driven by ATP hydrolysis. How the chemical reactions that occur in three catalytic sites are coupled to mechanical rotation is the central question. Here, we show by high-speed imaging of rotation in single molecules of F(1) that phosphate release drives the last 40 degrees of(More)
A single molecule of F1-ATPase is by itself a rotary motor in which a central gamma-subunit rotates against a surrounding cylinder made of alpha3beta3-subunits. Driven by the three betas that sequentially hydrolyse ATP, the motor rotates in discrete 120 degree steps, as demonstrated in video images of the movement of an actin filament bound, as a marker, to(More)
Myosin V is a two-headed, actin-based molecular motor implicated in organelle transport. Previously, a single myosin V molecule has been shown to move processively along an actin filament in discrete approximately 36 nm steps. However, 36 nm is the helical repeat length of actin, and the geometry of the previous experiments may have forced the heads to bind(More)
Orientation dependence of single-fluorophore intensity was exploited in order to videotape conformational changes in a protein machine in real time. The fluorophore Cy3 attached to the central subunit of F(1)-ATPase revealed that the subunit rotates in the molecule in discrete 120 degrees steps and that each step is driven by the hydrolysis of one ATP(More)
F1-ATPase is a rotary motor made of a single protein molecule. Its rotation is driven by free energy obtained by ATP hydrolysis. In vivo, another motor, Fo, presumably rotates the F1 motor in the reverse direction, reversing also the chemical reaction in F1 to let it synthesize ATP. Here we attempt to answer two related questions, How is free energy(More)
F1-adenosine triphosphatase (ATPase) is an ATP-driven rotary molecular motor in which the central gamma subunit rotates inside a cylinder made of three alpha and three beta subunits alternately arranged. The rotor shaft, an antiparallel alpha-helical coiled coil of the amino and carboxyl termini of the gamma subunit, deeply penetrates the central cavity of(More)
F(1)-ATPase is a rotary molecular motor in which the central gamma subunit rotates inside a cylinder made of alpha(3)beta(3) subunits. To clarify how ATP hydrolysis in three catalytic sites cooperate to drive rotation, we measured the site occupancy, the number of catalytic sites occupied by a nucleotide, while assessing the hydrolysis activity under(More)
F1-ATPase is an ATP-driven rotary motor in which a rod-shaped gamma subunit rotates inside a cylinder made of alpha3beta3 subunits. To elucidate the conformations of rotating F1, we measured fluorescence resonance energy transfer (FRET) between a donor on one of the three betas and an acceptor on gamma in single F1 molecules. The yield of FRET changed(More)
F(1)-ATPase is a rotary molecular motor in which the central gamma-subunit rotates inside a cylinder made of alpha(3)beta(3)-subunits. The rotation is driven by ATP hydrolysis in three catalytic sites on the beta-subunits. How many of the three catalytic sites are filled with a nucleotide during the course of rotation is an important yet unsettled question.(More)
Vacuole-type ATPases (V(o)V₁) and F(o)F₁ ATP synthases couple ATP hydrolysis/synthesis in the soluble V(1) or F₁ portion with proton (or Na(+)) flow in the membrane-embedded V(o) or F(o) portion through rotation of one common shaft. Here we show at submillisecond resolutions the ATP-driven rotation of isolated V₁ and the whole V(o)V₁ from Thermus(More)